生物固体多维核磁共振光谱中的交叉极化稳定性。

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Benjamin D. Harding , Alexander M. Barclay , Dennis W. Piehl , Ashley Hiett , Owen A. Warmuth , Ruixian Han , Katherine Henzler-Wildman , Chad M. Rienstra
{"title":"生物固体多维核磁共振光谱中的交叉极化稳定性。","authors":"Benjamin D. Harding ,&nbsp;Alexander M. Barclay ,&nbsp;Dennis W. Piehl ,&nbsp;Ashley Hiett ,&nbsp;Owen A. Warmuth ,&nbsp;Ruixian Han ,&nbsp;Katherine Henzler-Wildman ,&nbsp;Chad M. Rienstra","doi":"10.1016/j.jmr.2024.107724","DOIUrl":null,"url":null,"abstract":"<div><p>Magic-angle spinning (MAS) solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a powerful and versatile technique for probing structure and dynamics in large, insoluble biological systems at atomic resolution. With many recent advances in instrumentation and polarization methods, technology development in SSNMR remains an active area of research and presents opportunities to further improve data collection, processing, and analysis of samples with low sensitivity and complex tertiary and quaternary structures. SSNMR spectra are often collected as multidimensional data, requiring stable experimental conditions to minimize signal fluctuations (t<sub>1</sub> noise). In this work, we examine the factors adversely affecting signal stability as well as strategies used to mitigate them, considering laboratory environmental requirements, configuration of amplifiers, and pulse sequence parameter selection. We show that Thermopad® temperature variable attenuators (TVAs) can partially compensate for the changes in amplifier output power as a function of temperature and thereby ameliorate one significant source of instability for some spectrometers and pulse sequences. We also consider the selection of tangent ramped cross polarization (CP) waveform shapes, to balance the requirements of sensitivity and instrumental stability. These findings collectively enable improved stability and overall performance for CP-based multidimensional spectra of microcrystalline, membrane, and fibrous proteins performed at multiple magnetic field strengths.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"365 ","pages":"Article 107724"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross polarization stability in multidimensional NMR spectroscopy of biological solids\",\"authors\":\"Benjamin D. Harding ,&nbsp;Alexander M. Barclay ,&nbsp;Dennis W. Piehl ,&nbsp;Ashley Hiett ,&nbsp;Owen A. Warmuth ,&nbsp;Ruixian Han ,&nbsp;Katherine Henzler-Wildman ,&nbsp;Chad M. Rienstra\",\"doi\":\"10.1016/j.jmr.2024.107724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Magic-angle spinning (MAS) solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a powerful and versatile technique for probing structure and dynamics in large, insoluble biological systems at atomic resolution. With many recent advances in instrumentation and polarization methods, technology development in SSNMR remains an active area of research and presents opportunities to further improve data collection, processing, and analysis of samples with low sensitivity and complex tertiary and quaternary structures. SSNMR spectra are often collected as multidimensional data, requiring stable experimental conditions to minimize signal fluctuations (t<sub>1</sub> noise). In this work, we examine the factors adversely affecting signal stability as well as strategies used to mitigate them, considering laboratory environmental requirements, configuration of amplifiers, and pulse sequence parameter selection. We show that Thermopad® temperature variable attenuators (TVAs) can partially compensate for the changes in amplifier output power as a function of temperature and thereby ameliorate one significant source of instability for some spectrometers and pulse sequences. We also consider the selection of tangent ramped cross polarization (CP) waveform shapes, to balance the requirements of sensitivity and instrumental stability. These findings collectively enable improved stability and overall performance for CP-based multidimensional spectra of microcrystalline, membrane, and fibrous proteins performed at multiple magnetic field strengths.</p></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"365 \",\"pages\":\"Article 107724\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780724001083\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724001083","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

魔角旋转(MAS)固态核磁共振(SSNMR)光谱是一种功能强大、用途广泛的技术,可在原子分辨率下探测大型不溶性生物系统的结构和动力学。随着最近在仪器和极化方法方面取得的许多进展,SSNMR 的技术开发仍然是一个活跃的研究领域,并为进一步改进低灵敏度和复杂三级和四级结构样品的数据收集、处理和分析提供了机会。SSNMR 光谱通常以多维数据的形式采集,需要稳定的实验条件以尽量减少信号波动(t1 噪声)。在这项工作中,我们考虑了实验室环境要求、放大器配置和脉冲序列参数选择等因素,研究了对信号稳定性产生不利影响的因素以及用于缓解这些因素的策略。我们发现 Thermopad® 温度可变衰减器 (TVAs) 可以部分补偿放大器输出功率随温度而发生的变化,从而改善某些光谱仪和脉冲序列的一个重要不稳定来源。我们还考虑了切线斜坡交叉偏振(CP)波形的选择,以平衡灵敏度和仪器稳定性的要求。这些发现共同提高了在多种磁场强度下对微晶、膜和纤维蛋白质进行基于 CP 的多维光谱分析的稳定性和整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cross polarization stability in multidimensional NMR spectroscopy of biological solids

Cross polarization stability in multidimensional NMR spectroscopy of biological solids

Magic-angle spinning (MAS) solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a powerful and versatile technique for probing structure and dynamics in large, insoluble biological systems at atomic resolution. With many recent advances in instrumentation and polarization methods, technology development in SSNMR remains an active area of research and presents opportunities to further improve data collection, processing, and analysis of samples with low sensitivity and complex tertiary and quaternary structures. SSNMR spectra are often collected as multidimensional data, requiring stable experimental conditions to minimize signal fluctuations (t1 noise). In this work, we examine the factors adversely affecting signal stability as well as strategies used to mitigate them, considering laboratory environmental requirements, configuration of amplifiers, and pulse sequence parameter selection. We show that Thermopad® temperature variable attenuators (TVAs) can partially compensate for the changes in amplifier output power as a function of temperature and thereby ameliorate one significant source of instability for some spectrometers and pulse sequences. We also consider the selection of tangent ramped cross polarization (CP) waveform shapes, to balance the requirements of sensitivity and instrumental stability. These findings collectively enable improved stability and overall performance for CP-based multidimensional spectra of microcrystalline, membrane, and fibrous proteins performed at multiple magnetic field strengths.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信