改善基于环形扫描的光声断层扫描视野的实用解决方案。

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS
Seyed Mohsen Ranjbaran, Mohsin Zafar, Loïc Saint-Martin, Md Tarikuls Islam, Kamran Avanaki
{"title":"改善基于环形扫描的光声断层扫描视野的实用解决方案。","authors":"Seyed Mohsen Ranjbaran,&nbsp;Mohsin Zafar,&nbsp;Loïc Saint-Martin,&nbsp;Md Tarikuls Islam,&nbsp;Kamran Avanaki","doi":"10.1002/jbio.202400125","DOIUrl":null,"url":null,"abstract":"<p>One of the primary challenges in ring single-element photoacoustic tomography systems is the low image quality in areas away from the center of the ring. This is mainly due to the limited field of view (FOV) of each transducer, which in turn reduces the imaging FOV. To address this shortcoming, we have put forward a practical and straightforward solution to enhance the FOV of circular scanning-based photoacoustic tomography (CS-PAT). This is accomplished by placing transducers at different angles instead of using a single transducer placed at a normal angle to the imaging target. We also modified the ring scanner inner wall surface to significantly reduce photoacoustic reverberation. By imaging several phantoms, we show a significant improvement in the images generated by our system imaging from 4.1 to over 7 for the signal-to-noise ratio and structural similarity index increased from 41% to 70%.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400125","citationCount":"0","resultStr":"{\"title\":\"A practical solution to improve the field of view in circular scanning-based photoacoustic tomography\",\"authors\":\"Seyed Mohsen Ranjbaran,&nbsp;Mohsin Zafar,&nbsp;Loïc Saint-Martin,&nbsp;Md Tarikuls Islam,&nbsp;Kamran Avanaki\",\"doi\":\"10.1002/jbio.202400125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the primary challenges in ring single-element photoacoustic tomography systems is the low image quality in areas away from the center of the ring. This is mainly due to the limited field of view (FOV) of each transducer, which in turn reduces the imaging FOV. To address this shortcoming, we have put forward a practical and straightforward solution to enhance the FOV of circular scanning-based photoacoustic tomography (CS-PAT). This is accomplished by placing transducers at different angles instead of using a single transducer placed at a normal angle to the imaging target. We also modified the ring scanner inner wall surface to significantly reduce photoacoustic reverberation. By imaging several phantoms, we show a significant improvement in the images generated by our system imaging from 4.1 to over 7 for the signal-to-noise ratio and structural similarity index increased from 41% to 70%.</p>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400125\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400125\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400125","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

环形单元素光声层析成像系统面临的主要挑战之一是环形中心以外区域的图像质量较低。这主要是由于每个换能器的视场(FOV)有限,进而降低了成像视场。针对这一缺陷,我们提出了一种实用而直接的解决方案,以增强基于环形扫描的光声层析成像(CS-PAT)的视场。具体做法是将换能器放置在不同的角度,而不是使用与成像目标成正常角度的单个换能器。我们还修改了环形扫描仪的内壁表面,以显著降低光声混响。通过对多个模型进行成像,我们发现我们的系统所生成的图像信噪比从 4.1 显著提高到 7 以上,结构相似性指数从 41% 提高到 70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A practical solution to improve the field of view in circular scanning-based photoacoustic tomography

A practical solution to improve the field of view in circular scanning-based photoacoustic tomography

One of the primary challenges in ring single-element photoacoustic tomography systems is the low image quality in areas away from the center of the ring. This is mainly due to the limited field of view (FOV) of each transducer, which in turn reduces the imaging FOV. To address this shortcoming, we have put forward a practical and straightforward solution to enhance the FOV of circular scanning-based photoacoustic tomography (CS-PAT). This is accomplished by placing transducers at different angles instead of using a single transducer placed at a normal angle to the imaging target. We also modified the ring scanner inner wall surface to significantly reduce photoacoustic reverberation. By imaging several phantoms, we show a significant improvement in the images generated by our system imaging from 4.1 to over 7 for the signal-to-noise ratio and structural similarity index increased from 41% to 70%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信