灰短尾负鼠(Monodelphis domestica)肺血管的发育--微计算机断层扫描三维重建。

IF 1.8 4区 医学 Q2 ANATOMY & MORPHOLOGY
Kirsten Ferner
{"title":"灰短尾负鼠(Monodelphis domestica)肺血管的发育--微计算机断层扫描三维重建。","authors":"Kirsten Ferner","doi":"10.1002/ar.25542","DOIUrl":null,"url":null,"abstract":"<p><p>In the marsupial gray short-tailed opossum (Monodelphis domestica), the majority of lung development, including the maturation of pulmonary vasculature, takes place in ventilated functioning state during the postnatal period. The current study uses X-ray computed tomography (μCT) to three-dimensionally reconstruct the vascular trees of the pulmonary artery and pulmonary vein in 15 animals from neonate to postnatal day 57. The final 3D reconstructions of the pulmonary artery and pulmonary vein in the neonate and at 21, 35, and 57 dpn were transformed into a centerline model of the vascular trees. Based on the reconstructions, the generation of end-branching vessels, the median and maximum generation, and the number of vessels were calculated for the lungs. The pulmonary vasculature follows the lung anatomy with six pulmonary lobes indicated by the bronchial tree. The pulmonary arteries follow the bronchial tree closely, in contrast to the pulmonary veins, which run between the pulmonary segments. At birth the pulmonary vasculature has a simple branching pattern with a few vessel generations. Compared with the bronchial tree, the pulmonary vasculature appears to be more developed and extends to the large terminal air spaces. The pulmonary vasculature shows a marked gain in volume and a progressive increase in vascular complexity and density. The gray short-tailed opossum resembles the assumed mammalian ancestor and is suitable to inform on the evolution of the mammalian lung. Vascular genesis in the marsupial bears resemblance to developmental patterns described in eutherians. Lung development in general seems to be highly conservative within mammalian evolution.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of the pulmonary vasculature in the gray short-tailed opossum (Monodelphis domestica)-3D reconstruction by microcomputed tomography.\",\"authors\":\"Kirsten Ferner\",\"doi\":\"10.1002/ar.25542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the marsupial gray short-tailed opossum (Monodelphis domestica), the majority of lung development, including the maturation of pulmonary vasculature, takes place in ventilated functioning state during the postnatal period. The current study uses X-ray computed tomography (μCT) to three-dimensionally reconstruct the vascular trees of the pulmonary artery and pulmonary vein in 15 animals from neonate to postnatal day 57. The final 3D reconstructions of the pulmonary artery and pulmonary vein in the neonate and at 21, 35, and 57 dpn were transformed into a centerline model of the vascular trees. Based on the reconstructions, the generation of end-branching vessels, the median and maximum generation, and the number of vessels were calculated for the lungs. The pulmonary vasculature follows the lung anatomy with six pulmonary lobes indicated by the bronchial tree. The pulmonary arteries follow the bronchial tree closely, in contrast to the pulmonary veins, which run between the pulmonary segments. At birth the pulmonary vasculature has a simple branching pattern with a few vessel generations. Compared with the bronchial tree, the pulmonary vasculature appears to be more developed and extends to the large terminal air spaces. The pulmonary vasculature shows a marked gain in volume and a progressive increase in vascular complexity and density. The gray short-tailed opossum resembles the assumed mammalian ancestor and is suitable to inform on the evolution of the mammalian lung. Vascular genesis in the marsupial bears resemblance to developmental patterns described in eutherians. Lung development in general seems to be highly conservative within mammalian evolution.</p>\",\"PeriodicalId\":50965,\"journal\":{\"name\":\"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ar.25542\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ar.25542","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

有袋类动物灰短尾负鼠(Monodelphis domestica)的大部分肺部发育,包括肺血管的成熟,都是在出生后的通气功能状态下进行的。本研究利用 X 射线计算机断层扫描(μCT)对 15 只动物从新生儿到出生后第 57 天的肺动脉和肺静脉血管树进行三维重建。新生儿、21、35 和 57 dpn 时肺动脉和肺静脉的最终三维重建结果被转化为血管树的中心线模型。根据重建结果,计算出肺部末端分支血管的生成量、中位数和最大生成量以及血管数量。肺部血管遵循肺部解剖结构,支气管树表示六个肺叶。肺动脉紧随支气管树,而肺静脉则位于肺段之间。刚出生时,肺血管的分支模式很简单,只有几代血管。与支气管树相比,肺血管似乎更为发达,并延伸至大的终末气腔。肺血管的体积明显增大,血管的复杂性和密度逐渐增加。灰短尾负鼠与假定的哺乳动物祖先相似,适合作为哺乳动物肺进化的参考。有袋类动物的血管起源与真兽类的发育模式相似。在哺乳动物的进化过程中,肺的发育总体上似乎是高度保守的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of the pulmonary vasculature in the gray short-tailed opossum (Monodelphis domestica)-3D reconstruction by microcomputed tomography.

In the marsupial gray short-tailed opossum (Monodelphis domestica), the majority of lung development, including the maturation of pulmonary vasculature, takes place in ventilated functioning state during the postnatal period. The current study uses X-ray computed tomography (μCT) to three-dimensionally reconstruct the vascular trees of the pulmonary artery and pulmonary vein in 15 animals from neonate to postnatal day 57. The final 3D reconstructions of the pulmonary artery and pulmonary vein in the neonate and at 21, 35, and 57 dpn were transformed into a centerline model of the vascular trees. Based on the reconstructions, the generation of end-branching vessels, the median and maximum generation, and the number of vessels were calculated for the lungs. The pulmonary vasculature follows the lung anatomy with six pulmonary lobes indicated by the bronchial tree. The pulmonary arteries follow the bronchial tree closely, in contrast to the pulmonary veins, which run between the pulmonary segments. At birth the pulmonary vasculature has a simple branching pattern with a few vessel generations. Compared with the bronchial tree, the pulmonary vasculature appears to be more developed and extends to the large terminal air spaces. The pulmonary vasculature shows a marked gain in volume and a progressive increase in vascular complexity and density. The gray short-tailed opossum resembles the assumed mammalian ancestor and is suitable to inform on the evolution of the mammalian lung. Vascular genesis in the marsupial bears resemblance to developmental patterns described in eutherians. Lung development in general seems to be highly conservative within mammalian evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
15.00%
发文量
266
审稿时长
4 months
期刊介绍: The Anatomical Record
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信