{"title":"pCO2、温度和盐度等多重胁迫组合对杀鱼鞭毛虫 Heterosigma akashiwo(Raphidophyceae)毒性的影响。","authors":"Malihe Mehdizadeh Allaf, Charles G. Trick","doi":"10.1111/jpy.13481","DOIUrl":null,"url":null,"abstract":"<p>Climate change and global warming have led to more frequent harmful algal blooms in the last decade. Among these blooms, <i>Heterosigma akashiwo</i>, a golden-brown phytoflagellate, is one of the 40 species with a high potential to form harmful blooms, leading to significant fish mortality. Climate change leads to rising atmospheric and ocean temperatures. These changes, along with altered rainfall patterns and meltwater input, can cause fluctuations in ocean salinity. Elevated atmospheric carbon dioxide (CO<sub>2</sub>) levels increase water acidity as oceans absorb CO<sub>2</sub>. This study investigated the effects of temperature, salinity, and CO<sub>2</sub> levels on lipid production, hemolytic activity, and toxicity of <i>H. akashiwo</i> using the design of experiment approach, which can be used to investigate the effect of two or more factors on the same response simultaneously in a precise manner with fewer experiments and materials but in a larger region of the factor space. The lipid content was measured using a high-throughput Nile Red method, and the highest level of lipid content was detected at 25°C, a salinity of 30, and a CO<sub>2</sub> concentration of 400 ppm. Hemolytic activity was assessed using rabbit blood erythrocytes in a 96-well plate, and the optimal conditions for achieving the highest hemolytic activity were determined at 15°C, a salinity of 10, and a CO<sub>2</sub> concentration of 400 ppm. As the chemical structure of the toxin is not known, we used the toxicity against the cell line RTgill-W1 as the cell toxicity proxy. The maximum toxicity was identified at 15°C, a salinity of 10, and a CO<sub>2</sub> level of 700 ppm.</p>","PeriodicalId":16831,"journal":{"name":"Journal of Phycology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13481","citationCount":"0","resultStr":"{\"title\":\"Influence of multi-stressor combinations of pCO2, temperature, and salinity on the toxicity of Heterosigma akashiwo (Raphidophyceae), a fish-killing flagellate\",\"authors\":\"Malihe Mehdizadeh Allaf, Charles G. Trick\",\"doi\":\"10.1111/jpy.13481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change and global warming have led to more frequent harmful algal blooms in the last decade. Among these blooms, <i>Heterosigma akashiwo</i>, a golden-brown phytoflagellate, is one of the 40 species with a high potential to form harmful blooms, leading to significant fish mortality. Climate change leads to rising atmospheric and ocean temperatures. These changes, along with altered rainfall patterns and meltwater input, can cause fluctuations in ocean salinity. Elevated atmospheric carbon dioxide (CO<sub>2</sub>) levels increase water acidity as oceans absorb CO<sub>2</sub>. This study investigated the effects of temperature, salinity, and CO<sub>2</sub> levels on lipid production, hemolytic activity, and toxicity of <i>H. akashiwo</i> using the design of experiment approach, which can be used to investigate the effect of two or more factors on the same response simultaneously in a precise manner with fewer experiments and materials but in a larger region of the factor space. The lipid content was measured using a high-throughput Nile Red method, and the highest level of lipid content was detected at 25°C, a salinity of 30, and a CO<sub>2</sub> concentration of 400 ppm. Hemolytic activity was assessed using rabbit blood erythrocytes in a 96-well plate, and the optimal conditions for achieving the highest hemolytic activity were determined at 15°C, a salinity of 10, and a CO<sub>2</sub> concentration of 400 ppm. As the chemical structure of the toxin is not known, we used the toxicity against the cell line RTgill-W1 as the cell toxicity proxy. The maximum toxicity was identified at 15°C, a salinity of 10, and a CO<sub>2</sub> level of 700 ppm.</p>\",\"PeriodicalId\":16831,\"journal\":{\"name\":\"Journal of Phycology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jpy.13481\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jpy.13481\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phycology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpy.13481","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Influence of multi-stressor combinations of pCO2, temperature, and salinity on the toxicity of Heterosigma akashiwo (Raphidophyceae), a fish-killing flagellate
Climate change and global warming have led to more frequent harmful algal blooms in the last decade. Among these blooms, Heterosigma akashiwo, a golden-brown phytoflagellate, is one of the 40 species with a high potential to form harmful blooms, leading to significant fish mortality. Climate change leads to rising atmospheric and ocean temperatures. These changes, along with altered rainfall patterns and meltwater input, can cause fluctuations in ocean salinity. Elevated atmospheric carbon dioxide (CO2) levels increase water acidity as oceans absorb CO2. This study investigated the effects of temperature, salinity, and CO2 levels on lipid production, hemolytic activity, and toxicity of H. akashiwo using the design of experiment approach, which can be used to investigate the effect of two or more factors on the same response simultaneously in a precise manner with fewer experiments and materials but in a larger region of the factor space. The lipid content was measured using a high-throughput Nile Red method, and the highest level of lipid content was detected at 25°C, a salinity of 30, and a CO2 concentration of 400 ppm. Hemolytic activity was assessed using rabbit blood erythrocytes in a 96-well plate, and the optimal conditions for achieving the highest hemolytic activity were determined at 15°C, a salinity of 10, and a CO2 concentration of 400 ppm. As the chemical structure of the toxin is not known, we used the toxicity against the cell line RTgill-W1 as the cell toxicity proxy. The maximum toxicity was identified at 15°C, a salinity of 10, and a CO2 level of 700 ppm.
期刊介绍:
The Journal of Phycology was founded in 1965 by the Phycological Society of America. All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, taxonomist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.
All aspects of basic and applied research on algae are included to provide a common medium for the ecologist, physiologist, cell biologist, molecular biologist, morphologist, oceanographer, acquaculturist, systematist, geneticist, and biochemist. The Journal also welcomes research that emphasizes algal interactions with other organisms and the roles of algae as components of natural ecosystems.