John W Steele, Vaishnav Krishnan, Richard H Finnell
{"title":"托吡酯对神经发育的毒性机制。","authors":"John W Steele, Vaishnav Krishnan, Richard H Finnell","doi":"10.1080/10408444.2024.2368552","DOIUrl":null,"url":null,"abstract":"<p><p>Prescriptions for antiseizure medications (ASMs) have been rapidly growing over the last several decades due, in part, to an expanding list of clinical indications for which they are now prescribed. This trend has raised concern for potential adverse neurodevelopmental outcomes in ASM-exposed pregnancies. Recent large scale population studies have suggested that the use of topiramate (TOPAMAX, Janssen-Cilag), when prescribed for seizure control, migraines, and/or weight management, is associated with an increased risk for autism spectrum disorder (ASD), intellectual disability, and attention-deficit/hyperactivity disorder (ADHD) in exposed offspring. Here, we critically review epidemiologic evidence demonstrating the neurobehavioral teratogenicity of topiramate and speculate on the neuromolecular mechanisms by which prenatal exposure may perturb neurocognitive development. Specifically, we explore the potential role of topiramate's pharmacological interactions with ligand- and voltage-gated ion channels, especially GABAergic signaling, its effects on DNA methylation and histone acetylation, whether topiramate induces oxidative stress, and its association with fetal growth restriction as possible mechanisms contributing to neurodevelopmental toxicity. Resolving this biology will be necessary to reduce the risk of adverse pregnancy outcomes caused by topiramate or other ASMs.</p>","PeriodicalId":10869,"journal":{"name":"Critical Reviews in Toxicology","volume":" ","pages":"465-475"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296906/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of neurodevelopmental toxicity of topiramate.\",\"authors\":\"John W Steele, Vaishnav Krishnan, Richard H Finnell\",\"doi\":\"10.1080/10408444.2024.2368552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prescriptions for antiseizure medications (ASMs) have been rapidly growing over the last several decades due, in part, to an expanding list of clinical indications for which they are now prescribed. This trend has raised concern for potential adverse neurodevelopmental outcomes in ASM-exposed pregnancies. Recent large scale population studies have suggested that the use of topiramate (TOPAMAX, Janssen-Cilag), when prescribed for seizure control, migraines, and/or weight management, is associated with an increased risk for autism spectrum disorder (ASD), intellectual disability, and attention-deficit/hyperactivity disorder (ADHD) in exposed offspring. Here, we critically review epidemiologic evidence demonstrating the neurobehavioral teratogenicity of topiramate and speculate on the neuromolecular mechanisms by which prenatal exposure may perturb neurocognitive development. Specifically, we explore the potential role of topiramate's pharmacological interactions with ligand- and voltage-gated ion channels, especially GABAergic signaling, its effects on DNA methylation and histone acetylation, whether topiramate induces oxidative stress, and its association with fetal growth restriction as possible mechanisms contributing to neurodevelopmental toxicity. Resolving this biology will be necessary to reduce the risk of adverse pregnancy outcomes caused by topiramate or other ASMs.</p>\",\"PeriodicalId\":10869,\"journal\":{\"name\":\"Critical Reviews in Toxicology\",\"volume\":\" \",\"pages\":\"465-475\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296906/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10408444.2024.2368552\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10408444.2024.2368552","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Mechanisms of neurodevelopmental toxicity of topiramate.
Prescriptions for antiseizure medications (ASMs) have been rapidly growing over the last several decades due, in part, to an expanding list of clinical indications for which they are now prescribed. This trend has raised concern for potential adverse neurodevelopmental outcomes in ASM-exposed pregnancies. Recent large scale population studies have suggested that the use of topiramate (TOPAMAX, Janssen-Cilag), when prescribed for seizure control, migraines, and/or weight management, is associated with an increased risk for autism spectrum disorder (ASD), intellectual disability, and attention-deficit/hyperactivity disorder (ADHD) in exposed offspring. Here, we critically review epidemiologic evidence demonstrating the neurobehavioral teratogenicity of topiramate and speculate on the neuromolecular mechanisms by which prenatal exposure may perturb neurocognitive development. Specifically, we explore the potential role of topiramate's pharmacological interactions with ligand- and voltage-gated ion channels, especially GABAergic signaling, its effects on DNA methylation and histone acetylation, whether topiramate induces oxidative stress, and its association with fetal growth restriction as possible mechanisms contributing to neurodevelopmental toxicity. Resolving this biology will be necessary to reduce the risk of adverse pregnancy outcomes caused by topiramate or other ASMs.
期刊介绍:
Critical Reviews in Toxicology provides up-to-date, objective analyses of topics related to the mechanisms of action, responses, and assessment of health risks due to toxicant exposure. The journal publishes critical, comprehensive reviews of research findings in toxicology and the application of toxicological information in assessing human health hazards and risks. Toxicants of concern include commodity and specialty chemicals such as formaldehyde, acrylonitrile, and pesticides; pharmaceutical agents of all types; consumer products such as macronutrients and food additives; environmental agents such as ambient ozone; and occupational exposures such as asbestos and benzene.