利用细菌表面显示的酶-纳米材料混合物构建生物电催化系统。

IF 4.8 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Meiqing Li , Ranran Wu , Haiyan Song , Fei Li , Yuanming Wang , Yu Wang , Lijuan Ma , Zhiguang Zhu
{"title":"利用细菌表面显示的酶-纳米材料混合物构建生物电催化系统。","authors":"Meiqing Li ,&nbsp;Ranran Wu ,&nbsp;Haiyan Song ,&nbsp;Fei Li ,&nbsp;Yuanming Wang ,&nbsp;Yu Wang ,&nbsp;Lijuan Ma ,&nbsp;Zhiguang Zhu","doi":"10.1016/j.bioelechem.2024.108777","DOIUrl":null,"url":null,"abstract":"<div><p>To take advantage of the high specificity of enzymatic catalysis along with the high efficiency of electrochemical cofactor regeneration, a bacterial surface displayed enzyme-nanomaterial hybrid bioelectrocatalytic system is herein developed. A cofactor-dependent xylose reductase, capable of reducing xylose to xylitol, is displayed on the surface of <em>Bacillus subtilis</em>, followed by the attachment of copper nanomaterials via the binding of His-tagged enzyme with the nickel ion. This hybrid system can regenerate NADPH with a highest efficiency of 71.6% in 4 h without the usage of extra electron mediators, and 2.35 mM of xylitol can be synthesized after a series of optimization processes. This work opens up new possibilities for the construction and application of bioelectrocatalytic systems with enzyme-nanomaterial hybrids.</p></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"160 ","pages":"Article 108777"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of a bioelectrocatalytic system with bacterial surface displayed enzyme-nanomaterial hybrids\",\"authors\":\"Meiqing Li ,&nbsp;Ranran Wu ,&nbsp;Haiyan Song ,&nbsp;Fei Li ,&nbsp;Yuanming Wang ,&nbsp;Yu Wang ,&nbsp;Lijuan Ma ,&nbsp;Zhiguang Zhu\",\"doi\":\"10.1016/j.bioelechem.2024.108777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To take advantage of the high specificity of enzymatic catalysis along with the high efficiency of electrochemical cofactor regeneration, a bacterial surface displayed enzyme-nanomaterial hybrid bioelectrocatalytic system is herein developed. A cofactor-dependent xylose reductase, capable of reducing xylose to xylitol, is displayed on the surface of <em>Bacillus subtilis</em>, followed by the attachment of copper nanomaterials via the binding of His-tagged enzyme with the nickel ion. This hybrid system can regenerate NADPH with a highest efficiency of 71.6% in 4 h without the usage of extra electron mediators, and 2.35 mM of xylitol can be synthesized after a series of optimization processes. This work opens up new possibilities for the construction and application of bioelectrocatalytic systems with enzyme-nanomaterial hybrids.</p></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"160 \",\"pages\":\"Article 108777\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567539424001397\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424001397","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了利用酶催化的高特异性和电化学辅助因子再生的高效性,本文开发了一种细菌表面酶-纳米材料混合生物电催化系统。在枯草芽孢杆菌表面展示了一种依赖于辅因子的木糖还原酶,该酶能够将木糖还原成木糖醇,然后通过 His 标记的酶与镍离子的结合附着上纳米铜材料。该混合系统无需使用额外的电子介质,就能在 4 小时内以 71.6% 的最高效率再生 NADPH,并且经过一系列优化过程后可合成 2.35 mM 的木糖醇。这项工作为构建和应用酶-纳米材料混合生物电催化系统提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of a bioelectrocatalytic system with bacterial surface displayed enzyme-nanomaterial hybrids

To take advantage of the high specificity of enzymatic catalysis along with the high efficiency of electrochemical cofactor regeneration, a bacterial surface displayed enzyme-nanomaterial hybrid bioelectrocatalytic system is herein developed. A cofactor-dependent xylose reductase, capable of reducing xylose to xylitol, is displayed on the surface of Bacillus subtilis, followed by the attachment of copper nanomaterials via the binding of His-tagged enzyme with the nickel ion. This hybrid system can regenerate NADPH with a highest efficiency of 71.6% in 4 h without the usage of extra electron mediators, and 2.35 mM of xylitol can be synthesized after a series of optimization processes. This work opens up new possibilities for the construction and application of bioelectrocatalytic systems with enzyme-nanomaterial hybrids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioelectrochemistry
Bioelectrochemistry 生物-电化学
CiteScore
9.10
自引率
6.00%
发文量
238
审稿时长
38 days
期刊介绍: An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of: • Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction. • Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms) • Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes) • Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion) • Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair). • Organization and use of arrays in-vitro and in-vivo, including as part of feedback control. • Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信