Na Wen, Yingping Huang, Yuantao Yang, Hankun Wang, Decheng Wang, Haohao Chen, Qintian Peng, Xing Ying Kong, Liqun Ye
{"title":"动态溴空位介导的光催化三步三电子氧还原羟基自由基","authors":"Na Wen, Yingping Huang, Yuantao Yang, Hankun Wang, Decheng Wang, Haohao Chen, Qintian Peng, Xing Ying Kong, Liqun Ye","doi":"10.1021/acscatal.4c02674","DOIUrl":null,"url":null,"abstract":"Hydroxyl radicals (•OH), recognized for their strong oxidizing ability, have garnered extensive attention in the field of photocatalysis. However, as a two-dimensional layered material widely employed in the field of environmental photocatalysis, BiOBr is incapable of catalyzing the generation of •OH, severely impeding its efficient degradation of organic pollutants. In this paper, we propose an efficient approach to generate •OH by expanding the spacing between crystal faces. Through the expansion of the {001} crystal face spacing of BiOBr, we synthesized ultrathin BiOBr-3 nanosheets with reduced bond energy of the Bi–Br bond, which favored the precipitation of Br<sup>–</sup> and the formation of bromine vacancies (Br<sub>V</sub>) under photocatalytic conditions, thereby promoting the efficient activation of molecular oxygen to generate •OH. The mechanism of photocatalytic reduction of molecular oxygen to hydroxyl radicals by three steps and three electrons was elucidated by in situ infrared spectroscopy and free radical probe experiments. Density functional theory calculations indicated that BiOBr-3 containing bromine vacancies significantly reduced the free energy barrier of *OOH, facilitating the formation of H<sub>2</sub>O<sub>2</sub> and the reduction to •OH. In comparison to BiOBr without Br<sub>V</sub>, BiOBr-3 containing Br<sub>V</sub> demonstrated higher photoactivity toward degradation of triazine organic pollutants. The toxicity of the atrazine degradation solution was significantly reduced through the use of the toxicity estimation software tool and quantitative structure–activity relationship-based methods, as well as HepG2 cell viability detection.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"21 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Bromine Vacancy-Mediated Photocatalytic Three-Step Three-Electron Oxygen Reduction to Hydroxyl Radicals\",\"authors\":\"Na Wen, Yingping Huang, Yuantao Yang, Hankun Wang, Decheng Wang, Haohao Chen, Qintian Peng, Xing Ying Kong, Liqun Ye\",\"doi\":\"10.1021/acscatal.4c02674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydroxyl radicals (•OH), recognized for their strong oxidizing ability, have garnered extensive attention in the field of photocatalysis. However, as a two-dimensional layered material widely employed in the field of environmental photocatalysis, BiOBr is incapable of catalyzing the generation of •OH, severely impeding its efficient degradation of organic pollutants. In this paper, we propose an efficient approach to generate •OH by expanding the spacing between crystal faces. Through the expansion of the {001} crystal face spacing of BiOBr, we synthesized ultrathin BiOBr-3 nanosheets with reduced bond energy of the Bi–Br bond, which favored the precipitation of Br<sup>–</sup> and the formation of bromine vacancies (Br<sub>V</sub>) under photocatalytic conditions, thereby promoting the efficient activation of molecular oxygen to generate •OH. The mechanism of photocatalytic reduction of molecular oxygen to hydroxyl radicals by three steps and three electrons was elucidated by in situ infrared spectroscopy and free radical probe experiments. Density functional theory calculations indicated that BiOBr-3 containing bromine vacancies significantly reduced the free energy barrier of *OOH, facilitating the formation of H<sub>2</sub>O<sub>2</sub> and the reduction to •OH. In comparison to BiOBr without Br<sub>V</sub>, BiOBr-3 containing Br<sub>V</sub> demonstrated higher photoactivity toward degradation of triazine organic pollutants. The toxicity of the atrazine degradation solution was significantly reduced through the use of the toxicity estimation software tool and quantitative structure–activity relationship-based methods, as well as HepG2 cell viability detection.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acscatal.4c02674\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c02674","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Hydroxyl radicals (•OH), recognized for their strong oxidizing ability, have garnered extensive attention in the field of photocatalysis. However, as a two-dimensional layered material widely employed in the field of environmental photocatalysis, BiOBr is incapable of catalyzing the generation of •OH, severely impeding its efficient degradation of organic pollutants. In this paper, we propose an efficient approach to generate •OH by expanding the spacing between crystal faces. Through the expansion of the {001} crystal face spacing of BiOBr, we synthesized ultrathin BiOBr-3 nanosheets with reduced bond energy of the Bi–Br bond, which favored the precipitation of Br– and the formation of bromine vacancies (BrV) under photocatalytic conditions, thereby promoting the efficient activation of molecular oxygen to generate •OH. The mechanism of photocatalytic reduction of molecular oxygen to hydroxyl radicals by three steps and three electrons was elucidated by in situ infrared spectroscopy and free radical probe experiments. Density functional theory calculations indicated that BiOBr-3 containing bromine vacancies significantly reduced the free energy barrier of *OOH, facilitating the formation of H2O2 and the reduction to •OH. In comparison to BiOBr without BrV, BiOBr-3 containing BrV demonstrated higher photoactivity toward degradation of triazine organic pollutants. The toxicity of the atrazine degradation solution was significantly reduced through the use of the toxicity estimation software tool and quantitative structure–activity relationship-based methods, as well as HepG2 cell viability detection.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.