以数据科学为指导预测胺对映体过量--一种工作流程方法

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2024-08-08 DOI:10.1016/j.chempr.2024.06.032
{"title":"以数据科学为指导预测胺对映体过量--一种工作流程方法","authors":"","doi":"10.1016/j.chempr.2024.06.032","DOIUrl":null,"url":null,"abstract":"<div><p>Potential bottlenecks in high-throughput determination of enantiomeric excess in chiral primary amines is being addressed, by Howard et al. in this issue of <em>Chem</em>, by developing a data-driven methodology that replaces extensive calibration measurements and the corresponding calibration curves through a combination of machine learning methods and computations that produces a theoretical model and predicted calibration curves.</p></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward data-science-guided prediction of enantiomeric excess in amines—A workflow method\",\"authors\":\"\",\"doi\":\"10.1016/j.chempr.2024.06.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Potential bottlenecks in high-throughput determination of enantiomeric excess in chiral primary amines is being addressed, by Howard et al. in this issue of <em>Chem</em>, by developing a data-driven methodology that replaces extensive calibration measurements and the corresponding calibration curves through a combination of machine learning methods and computations that produces a theoretical model and predicted calibration curves.</p></div>\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451929424003115\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424003115","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Howard 等人在本期《化学》杂志上针对高通量测定手性伯胺对映体过量的潜在瓶颈问题,开发了一种数据驱动方法,通过机器学习方法和计算相结合,生成理论模型和预测校准曲线,从而取代大量的校准测量和相应的校准曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward data-science-guided prediction of enantiomeric excess in amines—A workflow method

Potential bottlenecks in high-throughput determination of enantiomeric excess in chiral primary amines is being addressed, by Howard et al. in this issue of Chem, by developing a data-driven methodology that replaces extensive calibration measurements and the corresponding calibration curves through a combination of machine learning methods and computations that produces a theoretical model and predicted calibration curves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信