Fatemeh Ebrahimi, Amir Abbas Rafati, Ahmad Bagheri
{"title":"在实际样品中使用经 TiO2 纳米粒子和碳纳米管修饰的玻璃碳电极测定左旋多巴","authors":"Fatemeh Ebrahimi, Amir Abbas Rafati, Ahmad Bagheri","doi":"10.1007/s10008-024-05978-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel sensor for the detection of levodopa (LD) utilizing a glassy carbon electrode modified with a TiO<sub>2</sub>/MWCNT nanocomposite. Structural analysis confirmed the suitability of the nanocomposite for sensor fabrication, revealing enhancements in effective surface area and sensitivity. Characterization studies employing SEM, EDX, and FT-IR analyses provided insights into the composition and morphology of the modified electrode. The sensor exhibited exceptional performance metrics, including a wide linear detection range (19.6–545 µM), low detection limit (2.51 µM), high repeatability (78.1%), and remarkable average recovery rates in real samples (99.86%). Minimal interference from interfering species further demonstrated its practical utility. Moreover, the sensor’s direct applicability in diverse sample matrices, without the need for sample separation, highlighted its versatility and convenience. Comparative analysis revealed the sensor’s performance to be comparable to established methods, offering a cost-effective and streamlined approach to LD measurement. Overall, the modified glassy carbon electrode with TiO<sub>2</sub>/MWCNT nanocomposite presents a clear, suitable, and stable electrocatalytic response, promising significant advancements in biosensing technology for LD detection.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"28 11","pages":"3985 - 3998"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of levodopa using a glassy carbon electrode modified with TiO2 nanoparticles and carbon nanotubes in real samples\",\"authors\":\"Fatemeh Ebrahimi, Amir Abbas Rafati, Ahmad Bagheri\",\"doi\":\"10.1007/s10008-024-05978-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a novel sensor for the detection of levodopa (LD) utilizing a glassy carbon electrode modified with a TiO<sub>2</sub>/MWCNT nanocomposite. Structural analysis confirmed the suitability of the nanocomposite for sensor fabrication, revealing enhancements in effective surface area and sensitivity. Characterization studies employing SEM, EDX, and FT-IR analyses provided insights into the composition and morphology of the modified electrode. The sensor exhibited exceptional performance metrics, including a wide linear detection range (19.6–545 µM), low detection limit (2.51 µM), high repeatability (78.1%), and remarkable average recovery rates in real samples (99.86%). Minimal interference from interfering species further demonstrated its practical utility. Moreover, the sensor’s direct applicability in diverse sample matrices, without the need for sample separation, highlighted its versatility and convenience. Comparative analysis revealed the sensor’s performance to be comparable to established methods, offering a cost-effective and streamlined approach to LD measurement. Overall, the modified glassy carbon electrode with TiO<sub>2</sub>/MWCNT nanocomposite presents a clear, suitable, and stable electrocatalytic response, promising significant advancements in biosensing technology for LD detection.</p></div>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":\"28 11\",\"pages\":\"3985 - 3998\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10008-024-05978-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-05978-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Determination of levodopa using a glassy carbon electrode modified with TiO2 nanoparticles and carbon nanotubes in real samples
This study presents a novel sensor for the detection of levodopa (LD) utilizing a glassy carbon electrode modified with a TiO2/MWCNT nanocomposite. Structural analysis confirmed the suitability of the nanocomposite for sensor fabrication, revealing enhancements in effective surface area and sensitivity. Characterization studies employing SEM, EDX, and FT-IR analyses provided insights into the composition and morphology of the modified electrode. The sensor exhibited exceptional performance metrics, including a wide linear detection range (19.6–545 µM), low detection limit (2.51 µM), high repeatability (78.1%), and remarkable average recovery rates in real samples (99.86%). Minimal interference from interfering species further demonstrated its practical utility. Moreover, the sensor’s direct applicability in diverse sample matrices, without the need for sample separation, highlighted its versatility and convenience. Comparative analysis revealed the sensor’s performance to be comparable to established methods, offering a cost-effective and streamlined approach to LD measurement. Overall, the modified glassy carbon electrode with TiO2/MWCNT nanocomposite presents a clear, suitable, and stable electrocatalytic response, promising significant advancements in biosensing technology for LD detection.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.