具有截止反应速率的剪切流中的 KPP 锋面

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
D. J. Needham, A. Tzella
{"title":"具有截止反应速率的剪切流中的 KPP 锋面","authors":"D. J. Needham,&nbsp;A. Tzella","doi":"10.1111/sapm.12732","DOIUrl":null,"url":null,"abstract":"<p>We consider the effect of a shear flow which has, without loss of generality, a zero mean flow rate, on a Kolmogorov–Petrovskii–Piscounov (KPP)-type model in the presence of a discontinuous cutoff at concentration <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>=</mo>\n <msub>\n <mi>u</mi>\n <mi>c</mi>\n </msub>\n </mrow>\n <annotation>$u = u_c$</annotation>\n </semantics></math>. In the long-time limit, a permanent-form traveling wave solution is established which, for fixed <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>u</mi>\n <mi>c</mi>\n </msub>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$u_c&amp;gt;0$</annotation>\n </semantics></math>, is unique. Its structure and speed of propagation depends on <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> (the strength of the flow relative to the propagation speed in the absence of advection) and <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> (the square of the front thickness relative to the channel width). We use matched asymptotic expansions to approximate the propagation speed in the three natural cases <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$A\\rightarrow \\infty$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>→</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$A\\rightarrow 0$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mo>=</mo>\n <mi>O</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$A=O(1)$</annotation>\n </semantics></math>, with particular associated orderings on <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math>, while <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>u</mi>\n <mi>c</mi>\n </msub>\n <mo>∈</mo>\n <mrow>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$u_c\\in (0,1)$</annotation>\n </semantics></math> remains fixed. In all the cases that we consider, the shear flow enhances the speed of propagation in a manner that is similar to the case without cutoff (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>u</mi>\n <mi>c</mi>\n </msub>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$u_c=0$</annotation>\n </semantics></math>). We illustrate the theory by evaluating expressions (either directly or through numerical integration) for the particular cases of the plane Couette and Poiseuille flows.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12732","citationCount":"0","resultStr":"{\"title\":\"KPP fronts in shear flows with cutoff reaction rates\",\"authors\":\"D. J. Needham,&nbsp;A. Tzella\",\"doi\":\"10.1111/sapm.12732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the effect of a shear flow which has, without loss of generality, a zero mean flow rate, on a Kolmogorov–Petrovskii–Piscounov (KPP)-type model in the presence of a discontinuous cutoff at concentration <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>u</mi>\\n <mi>c</mi>\\n </msub>\\n </mrow>\\n <annotation>$u = u_c$</annotation>\\n </semantics></math>. In the long-time limit, a permanent-form traveling wave solution is established which, for fixed <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>u</mi>\\n <mi>c</mi>\\n </msub>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$u_c&amp;gt;0$</annotation>\\n </semantics></math>, is unique. Its structure and speed of propagation depends on <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math> (the strength of the flow relative to the propagation speed in the absence of advection) and <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math> (the square of the front thickness relative to the channel width). We use matched asymptotic expansions to approximate the propagation speed in the three natural cases <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>→</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$A\\\\rightarrow \\\\infty$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>→</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$A\\\\rightarrow 0$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>A</mi>\\n <mo>=</mo>\\n <mi>O</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$A=O(1)$</annotation>\\n </semantics></math>, with particular associated orderings on <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$B$</annotation>\\n </semantics></math>, while <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>u</mi>\\n <mi>c</mi>\\n </msub>\\n <mo>∈</mo>\\n <mrow>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$u_c\\\\in (0,1)$</annotation>\\n </semantics></math> remains fixed. In all the cases that we consider, the shear flow enhances the speed of propagation in a manner that is similar to the case without cutoff (<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>u</mi>\\n <mi>c</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$u_c=0$</annotation>\\n </semantics></math>). We illustrate the theory by evaluating expressions (either directly or through numerical integration) for the particular cases of the plane Couette and Poiseuille flows.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12732\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在不失一般性的前提下,我们考虑了平均流速为零的剪切流对 Kolmogorov-Petrovski-Piscounov(KPP)型模型的影响。在长时间极限中,建立了一个永久形式的行波解,对于固定的 ,它是唯一的。它的结构和传播速度取决于(相对于无平流情况下的传播速度的流动强度)和(相对于通道宽度的前沿厚度的平方)。我们使用匹配的渐近展开法来近似计算 、 、 和 这三种自然情况下的传播速度,并对 、 、 和 进行特定的相关排序,同时保持固定不变。在我们考虑的所有情况下,剪切流都会增强传播速度,其方式与不切断()的情况类似。我们通过对平面库埃特流和普瓦塞耶流的特殊情况的表达式进行评估(直接或通过数值积分)来说明这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

KPP fronts in shear flows with cutoff reaction rates

KPP fronts in shear flows with cutoff reaction rates

We consider the effect of a shear flow which has, without loss of generality, a zero mean flow rate, on a Kolmogorov–Petrovskii–Piscounov (KPP)-type model in the presence of a discontinuous cutoff at concentration u = u c $u = u_c$ . In the long-time limit, a permanent-form traveling wave solution is established which, for fixed u c > 0 $u_c&gt;0$ , is unique. Its structure and speed of propagation depends on A $A$ (the strength of the flow relative to the propagation speed in the absence of advection) and B $B$ (the square of the front thickness relative to the channel width). We use matched asymptotic expansions to approximate the propagation speed in the three natural cases A $A\rightarrow \infty$ , A 0 $A\rightarrow 0$ , and A = O ( 1 ) $A=O(1)$ , with particular associated orderings on B $B$ , while u c ( 0 , 1 ) $u_c\in (0,1)$ remains fixed. In all the cases that we consider, the shear flow enhances the speed of propagation in a manner that is similar to the case without cutoff ( u c = 0 $u_c=0$ ). We illustrate the theory by evaluating expressions (either directly or through numerical integration) for the particular cases of the plane Couette and Poiseuille flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信