{"title":"纳米级真空沟道晶体管综述:从制造到电气性能","authors":"","doi":"10.1016/j.mee.2024.112230","DOIUrl":null,"url":null,"abstract":"<div><p>The vacuum channel transistor has emerged as a promising candidate for next-generation technology due to its intriguing features compared to the conventional field effect transistor. Nanoscale vacuum channel transistors have a particular advantage due to the promise of vacuum-like ballistic transport, radiation insensitivity, and nanoscale dimensions. Unlike field emission devices, nanoscale vacuum channel transistors can induce electron emission at a desired temperature; sharp and thin emitters on the cathode are desired to increase field emission. This article provides a comprehensive overview of recent research advancements. It begins with a brief introduction to vacuum transistors and their miniaturization to the nanoscale. Then, recent advancements in different architectures with vacuum gaps, including their physical properties, fabrication methods, and device applications, are discussed. Finally, this review concludes by highlighting some challenges and perspectives in this emerging field.</p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A synoptic review of nanoscale vacuum channel transistor: Fabrication to electrical performance\",\"authors\":\"\",\"doi\":\"10.1016/j.mee.2024.112230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The vacuum channel transistor has emerged as a promising candidate for next-generation technology due to its intriguing features compared to the conventional field effect transistor. Nanoscale vacuum channel transistors have a particular advantage due to the promise of vacuum-like ballistic transport, radiation insensitivity, and nanoscale dimensions. Unlike field emission devices, nanoscale vacuum channel transistors can induce electron emission at a desired temperature; sharp and thin emitters on the cathode are desired to increase field emission. This article provides a comprehensive overview of recent research advancements. It begins with a brief introduction to vacuum transistors and their miniaturization to the nanoscale. Then, recent advancements in different architectures with vacuum gaps, including their physical properties, fabrication methods, and device applications, are discussed. Finally, this review concludes by highlighting some challenges and perspectives in this emerging field.</p></div>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167931724000996\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931724000996","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A synoptic review of nanoscale vacuum channel transistor: Fabrication to electrical performance
The vacuum channel transistor has emerged as a promising candidate for next-generation technology due to its intriguing features compared to the conventional field effect transistor. Nanoscale vacuum channel transistors have a particular advantage due to the promise of vacuum-like ballistic transport, radiation insensitivity, and nanoscale dimensions. Unlike field emission devices, nanoscale vacuum channel transistors can induce electron emission at a desired temperature; sharp and thin emitters on the cathode are desired to increase field emission. This article provides a comprehensive overview of recent research advancements. It begins with a brief introduction to vacuum transistors and their miniaturization to the nanoscale. Then, recent advancements in different architectures with vacuum gaps, including their physical properties, fabrication methods, and device applications, are discussed. Finally, this review concludes by highlighting some challenges and perspectives in this emerging field.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.