二维 NiCo2S4 纳米片实现高效氧气进化反应

IF 1.4 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Li Meng, Jidong Zhang, Cheng Chen, Shihao Dai, Qiong Li, Kun Xiang
{"title":"二维 NiCo2S4 纳米片实现高效氧气进化反应","authors":"Li Meng, Jidong Zhang, Cheng Chen, Shihao Dai, Qiong Li, Kun Xiang","doi":"10.2174/0115734137319139240614103935","DOIUrl":null,"url":null,"abstract":"Introduction: The development of cost-effective and efficient catalysts plays a pivotal role in the realization of hydrogen production through electrochemical water splitting. Method: In this study, two-dimensional NiCo2S4 nanosheets weresynthesized usinga hydrothermal method followed by a sulfidation process. Results: The resulting materials were thoroughly characterized to understand their morphology and structure. The findings indicate that the NiCo2S4 nanosheets exhibit exceptional electrical conductivity and a high density of pores, which facilitate electrolyte infiltration and interfacial charge transfer during electrochemical reactions. Furthermore, the incorporation of S2− modulates the electronic structure of metal ions, reducing the oxidation potential of metal sites and promoting the surface reconstruction of the electrode to form active species. Electrochemical tests conducted in a 1 M KOH solution using the synthesized catalyst as the working electrode demonstrate an overpotential of merely 280 mV and 300 mV at a current density of 20 mA cm−2 and 40 mA cm−2 , respectively, which are much lower than those of NiCo-LDH electrodes (360 mV and 410 mV). Conclusion: Furthermore, the NiCo2S4 electrode delivers a remarkably low Tafel slope of 47.9 mV dec−1 . This investigation presents a novel approach to the development of efficient transition metal-based electrocatalysts.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"88 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Dimensional NiCo2S4 Nanosheets Deliver Efficient Oxygen Evolution Reaction\",\"authors\":\"Li Meng, Jidong Zhang, Cheng Chen, Shihao Dai, Qiong Li, Kun Xiang\",\"doi\":\"10.2174/0115734137319139240614103935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: The development of cost-effective and efficient catalysts plays a pivotal role in the realization of hydrogen production through electrochemical water splitting. Method: In this study, two-dimensional NiCo2S4 nanosheets weresynthesized usinga hydrothermal method followed by a sulfidation process. Results: The resulting materials were thoroughly characterized to understand their morphology and structure. The findings indicate that the NiCo2S4 nanosheets exhibit exceptional electrical conductivity and a high density of pores, which facilitate electrolyte infiltration and interfacial charge transfer during electrochemical reactions. Furthermore, the incorporation of S2− modulates the electronic structure of metal ions, reducing the oxidation potential of metal sites and promoting the surface reconstruction of the electrode to form active species. Electrochemical tests conducted in a 1 M KOH solution using the synthesized catalyst as the working electrode demonstrate an overpotential of merely 280 mV and 300 mV at a current density of 20 mA cm−2 and 40 mA cm−2 , respectively, which are much lower than those of NiCo-LDH electrodes (360 mV and 410 mV). Conclusion: Furthermore, the NiCo2S4 electrode delivers a remarkably low Tafel slope of 47.9 mV dec−1 . This investigation presents a novel approach to the development of efficient transition metal-based electrocatalysts.\",\"PeriodicalId\":10827,\"journal\":{\"name\":\"Current Nanoscience\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Nanoscience\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734137319139240614103935\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0115734137319139240614103935","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导言:开发具有成本效益的高效催化剂对于实现电化学水分离制氢具有举足轻重的作用。研究方法本研究采用水热法和硫化工艺制备了二维镍钴2S4纳米片。结果:对制备的材料进行了全面的表征,以了解其形态和结构。研究结果表明,NiCo2S4 纳米片具有优异的导电性和高密度的孔隙,这有利于电解质的渗透和电化学反应过程中的界面电荷转移。此外,S2- 的加入还能调节金属离子的电子结构,降低金属位点的氧化电位,促进电极表面重构,形成活性物种。以合成催化剂为工作电极在 1 M KOH 溶液中进行的电化学测试表明,在电流密度为 20 mA cm-2 和 40 mA cm-2 时,过电位分别仅为 280 mV 和 300 mV,远低于 NiCoLDH 电极的过电位(360 mV 和 410 mV)。结论此外,NiCo2S4 电极的塔菲尔斜率非常低,仅为 47.9 mV dec-1 。这项研究为开发基于过渡金属的高效电催化剂提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Dimensional NiCo2S4 Nanosheets Deliver Efficient Oxygen Evolution Reaction
Introduction: The development of cost-effective and efficient catalysts plays a pivotal role in the realization of hydrogen production through electrochemical water splitting. Method: In this study, two-dimensional NiCo2S4 nanosheets weresynthesized usinga hydrothermal method followed by a sulfidation process. Results: The resulting materials were thoroughly characterized to understand their morphology and structure. The findings indicate that the NiCo2S4 nanosheets exhibit exceptional electrical conductivity and a high density of pores, which facilitate electrolyte infiltration and interfacial charge transfer during electrochemical reactions. Furthermore, the incorporation of S2− modulates the electronic structure of metal ions, reducing the oxidation potential of metal sites and promoting the surface reconstruction of the electrode to form active species. Electrochemical tests conducted in a 1 M KOH solution using the synthesized catalyst as the working electrode demonstrate an overpotential of merely 280 mV and 300 mV at a current density of 20 mA cm−2 and 40 mA cm−2 , respectively, which are much lower than those of NiCo-LDH electrodes (360 mV and 410 mV). Conclusion: Furthermore, the NiCo2S4 electrode delivers a remarkably low Tafel slope of 47.9 mV dec−1 . This investigation presents a novel approach to the development of efficient transition metal-based electrocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Nanoscience
Current Nanoscience 工程技术-材料科学:综合
CiteScore
3.50
自引率
6.70%
发文量
83
审稿时长
4.4 months
期刊介绍: Current Nanoscience publishes (a) Authoritative/Mini Reviews, and (b) Original Research and Highlights written by experts covering the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano-structures, nano-bubbles, nano-droplets and nanofluids. Applications of nanoscience in physics, material science, chemistry, synthesis, environmental science, electronics, biomedical nanotechnology, biomedical engineering, biotechnology, medicine and pharmaceuticals are also covered. The journal is essential to all researches involved in nanoscience and its applied and fundamental areas of science, chemistry, physics, material science, engineering and medicine. Current Nanoscience also welcomes submissions on the following topics of Nanoscience and Nanotechnology: Nanoelectronics and photonics Advanced Nanomaterials Nanofabrication and measurement Nanobiotechnology and nanomedicine Nanotechnology for energy Sensors and actuator Computational nanoscience and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信