{"title":"全局空间和堆栈同调理论","authors":"Adrian Clough, Bastiaan Cnossen, Sil Linskens","doi":"arxiv-2407.06877","DOIUrl":null,"url":null,"abstract":"We show that the $\\infty$-category of global spaces is equivalent to the\nhomotopy localization of the $\\infty$-category of sheaves on the site of\nseparated differentiable stacks, following a philosophy proposed by\nGepner-Henriques. We further prove that this $\\infty$-category of sheaves is a\ncohesive $\\infty$-topos and that it fully faithfully contains the\nsingular-cohesive $\\infty$-topos of Sati-Schreiber.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global spaces and the homotopy theory of stacks\",\"authors\":\"Adrian Clough, Bastiaan Cnossen, Sil Linskens\",\"doi\":\"arxiv-2407.06877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the $\\\\infty$-category of global spaces is equivalent to the\\nhomotopy localization of the $\\\\infty$-category of sheaves on the site of\\nseparated differentiable stacks, following a philosophy proposed by\\nGepner-Henriques. We further prove that this $\\\\infty$-category of sheaves is a\\ncohesive $\\\\infty$-topos and that it fully faithfully contains the\\nsingular-cohesive $\\\\infty$-topos of Sati-Schreiber.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.06877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that the $\infty$-category of global spaces is equivalent to the
homotopy localization of the $\infty$-category of sheaves on the site of
separated differentiable stacks, following a philosophy proposed by
Gepner-Henriques. We further prove that this $\infty$-category of sheaves is a
cohesive $\infty$-topos and that it fully faithfully contains the
singular-cohesive $\infty$-topos of Sati-Schreiber.