全局空间和堆栈同调理论

Adrian Clough, Bastiaan Cnossen, Sil Linskens
{"title":"全局空间和堆栈同调理论","authors":"Adrian Clough, Bastiaan Cnossen, Sil Linskens","doi":"arxiv-2407.06877","DOIUrl":null,"url":null,"abstract":"We show that the $\\infty$-category of global spaces is equivalent to the\nhomotopy localization of the $\\infty$-category of sheaves on the site of\nseparated differentiable stacks, following a philosophy proposed by\nGepner-Henriques. We further prove that this $\\infty$-category of sheaves is a\ncohesive $\\infty$-topos and that it fully faithfully contains the\nsingular-cohesive $\\infty$-topos of Sati-Schreiber.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global spaces and the homotopy theory of stacks\",\"authors\":\"Adrian Clough, Bastiaan Cnossen, Sil Linskens\",\"doi\":\"arxiv-2407.06877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the $\\\\infty$-category of global spaces is equivalent to the\\nhomotopy localization of the $\\\\infty$-category of sheaves on the site of\\nseparated differentiable stacks, following a philosophy proposed by\\nGepner-Henriques. We further prove that this $\\\\infty$-category of sheaves is a\\ncohesive $\\\\infty$-topos and that it fully faithfully contains the\\nsingular-cohesive $\\\\infty$-topos of Sati-Schreiber.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.06877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了全局空间的$\infty$类别等价于在分离可微堆栈上的翮(sheaves)的$\infty$类别的同调局部化,这遵循了Gepner-Henriques提出的哲学。我们进一步证明了这个$\infty$-卷范畴是一个内聚的$\infty$-拓扑,并且它完全忠实地包含了萨蒂-施赖伯的singular-内聚的$\infty$-拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global spaces and the homotopy theory of stacks
We show that the $\infty$-category of global spaces is equivalent to the homotopy localization of the $\infty$-category of sheaves on the site of separated differentiable stacks, following a philosophy proposed by Gepner-Henriques. We further prove that this $\infty$-category of sheaves is a cohesive $\infty$-topos and that it fully faithfully contains the singular-cohesive $\infty$-topos of Sati-Schreiber.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信