用于风洞模型支撑刺的压电自适应主动振动抑制装置

IF 3.7 3区 材料科学 Q1 INSTRUMENTS & INSTRUMENTATION
Weiguang Li, Zhichun Yang, Ximing Zhu and Ke Liu
{"title":"用于风洞模型支撑刺的压电自适应主动振动抑制装置","authors":"Weiguang Li, Zhichun Yang, Ximing Zhu and Ke Liu","doi":"10.1088/1361-665x/ad5e4f","DOIUrl":null,"url":null,"abstract":"Due to flow separation and turbulence, the slender cantilever aircraft model support system is prone to low-frequency and large-amplitude resonance in the wind tunnel tests, resulting in a decrease in test data quality, a limited test envelope, and even threatening the safe operation of the wind tunnel. A piezoelectric active damping system based on the filtered-x least mean square algorithm is proposed to effectively suppress the vibration of the wind-tunnel model support sting. Firstly, a modified variable step least mean square algorithm is proposed to address the issue that the fixed-step algorithms limit each other in terms of convergence speed and steady-state error. Following that, a variable step filtered-x least mean square algorithm based on reference signal reconstruction is developed, and the corresponding feedback controller is designed to perform the ground tests of the piezoelectric active damping system for the wind-tunnel model support sting. The experimental results show that the proposed algorithm has a faster convergence speed and lower steady-state error than the traditional algorithms, as well as strong anti-noise and adaptive control abilities that significantly improve the active vibration suppression effect of the wind-tunnel model support sting.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"21 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezoelectric adaptive active vibration suppression for wind-tunnel model support sting\",\"authors\":\"Weiguang Li, Zhichun Yang, Ximing Zhu and Ke Liu\",\"doi\":\"10.1088/1361-665x/ad5e4f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to flow separation and turbulence, the slender cantilever aircraft model support system is prone to low-frequency and large-amplitude resonance in the wind tunnel tests, resulting in a decrease in test data quality, a limited test envelope, and even threatening the safe operation of the wind tunnel. A piezoelectric active damping system based on the filtered-x least mean square algorithm is proposed to effectively suppress the vibration of the wind-tunnel model support sting. Firstly, a modified variable step least mean square algorithm is proposed to address the issue that the fixed-step algorithms limit each other in terms of convergence speed and steady-state error. Following that, a variable step filtered-x least mean square algorithm based on reference signal reconstruction is developed, and the corresponding feedback controller is designed to perform the ground tests of the piezoelectric active damping system for the wind-tunnel model support sting. The experimental results show that the proposed algorithm has a faster convergence speed and lower steady-state error than the traditional algorithms, as well as strong anti-noise and adaptive control abilities that significantly improve the active vibration suppression effect of the wind-tunnel model support sting.\",\"PeriodicalId\":21656,\"journal\":{\"name\":\"Smart Materials and Structures\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-665x/ad5e4f\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad5e4f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

由于流动分离和湍流,细长悬臂飞机模型支撑系统在风洞试验中容易产生低频大振幅共振,导致试验数据质量下降、试验包络线受限,甚至威胁风洞的安全运行。本文提出了一种基于滤波-x 最小均方算法的压电主动阻尼系统,以有效抑制风洞模型支撑刺的振动。首先,针对固定步长算法在收敛速度和稳态误差方面相互限制的问题,提出了一种改进的变步长最小均方算法。随后,开发了基于参考信号重构的变步长滤波-x 最小均方算法,并设计了相应的反馈控制器,用于风洞模型支撑刺的压电主动阻尼系统的地面试验。实验结果表明,与传统算法相比,所提出的算法收敛速度更快,稳态误差更小,同时具有较强的抗噪声和自适应控制能力,显著提高了风洞模型支吊杆的主动抑振效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piezoelectric adaptive active vibration suppression for wind-tunnel model support sting
Due to flow separation and turbulence, the slender cantilever aircraft model support system is prone to low-frequency and large-amplitude resonance in the wind tunnel tests, resulting in a decrease in test data quality, a limited test envelope, and even threatening the safe operation of the wind tunnel. A piezoelectric active damping system based on the filtered-x least mean square algorithm is proposed to effectively suppress the vibration of the wind-tunnel model support sting. Firstly, a modified variable step least mean square algorithm is proposed to address the issue that the fixed-step algorithms limit each other in terms of convergence speed and steady-state error. Following that, a variable step filtered-x least mean square algorithm based on reference signal reconstruction is developed, and the corresponding feedback controller is designed to perform the ground tests of the piezoelectric active damping system for the wind-tunnel model support sting. The experimental results show that the proposed algorithm has a faster convergence speed and lower steady-state error than the traditional algorithms, as well as strong anti-noise and adaptive control abilities that significantly improve the active vibration suppression effect of the wind-tunnel model support sting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Materials and Structures
Smart Materials and Structures 工程技术-材料科学:综合
CiteScore
7.50
自引率
12.20%
发文量
317
审稿时长
3 months
期刊介绍: Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures. A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信