Juntian Niu, Shengzhuo Chen, Xianrong Zheng, Haiyu Liu, Yan Jin, Jingyu Ran
{"title":"镍粒度对重整过程中二氧化碳活化和一氧化碳形成的影响:密度泛函理论研究","authors":"Juntian Niu, Shengzhuo Chen, Xianrong Zheng, Haiyu Liu, Yan Jin, Jingyu Ran","doi":"10.1007/s11708-024-0952-6","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, the dry reforming of methane (DRM) reaction has gained widespread attention due to its effective utilization of two major greenhouse gases. Supported Ni-based catalysts for DRM exhibit a strong dependence on particle size, however, the reaction mechanisms involved remain unclear. In this work, the effect of metal particle size on CO<sub>2</sub> activation and CO formation was explored in the DRM reaction using the density functional theory. Ni<i>x</i>/MgO (<i>x</i> = 13, 25, 37) was constructed to investigate the CO<sub>2</sub> activation and the formation of CO during the DRM reaction. It is found that CO<sub>2</sub> is more inclined to undergo chemisorption on Ni<i>x</i>/MgO before activation. With the variation in particle size, the main activation pathway of CO<sub>2</sub> on the catalyst changes. On the smallest Ni13/MgO, CO<sub>2</sub> tends to directly dissociate, while on the larger Ni25/MgO and Ni37/MgO, the hydrogenation dissociation of CO<sub>2</sub> is more kinetically favorable. Compared to Ni13/MgO and Ni37/MgO, the oxidation of surface C atoms and the oxidation of CH occur more readily on Ni25/MgO. This indicates that C atoms are less likely to form on Ni25 particle and are more easily to be oxidized. To some extent, the results suggest that Ni25/MgO exhibits superior resistance to carbon formation.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 4","pages":"525 - 534"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Ni particle size on CO2 activation and CO formation during reforming process: A density functional theory study\",\"authors\":\"Juntian Niu, Shengzhuo Chen, Xianrong Zheng, Haiyu Liu, Yan Jin, Jingyu Ran\",\"doi\":\"10.1007/s11708-024-0952-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, the dry reforming of methane (DRM) reaction has gained widespread attention due to its effective utilization of two major greenhouse gases. Supported Ni-based catalysts for DRM exhibit a strong dependence on particle size, however, the reaction mechanisms involved remain unclear. In this work, the effect of metal particle size on CO<sub>2</sub> activation and CO formation was explored in the DRM reaction using the density functional theory. Ni<i>x</i>/MgO (<i>x</i> = 13, 25, 37) was constructed to investigate the CO<sub>2</sub> activation and the formation of CO during the DRM reaction. It is found that CO<sub>2</sub> is more inclined to undergo chemisorption on Ni<i>x</i>/MgO before activation. With the variation in particle size, the main activation pathway of CO<sub>2</sub> on the catalyst changes. On the smallest Ni13/MgO, CO<sub>2</sub> tends to directly dissociate, while on the larger Ni25/MgO and Ni37/MgO, the hydrogenation dissociation of CO<sub>2</sub> is more kinetically favorable. Compared to Ni13/MgO and Ni37/MgO, the oxidation of surface C atoms and the oxidation of CH occur more readily on Ni25/MgO. This indicates that C atoms are less likely to form on Ni25 particle and are more easily to be oxidized. To some extent, the results suggest that Ni25/MgO exhibits superior resistance to carbon formation.</p></div>\",\"PeriodicalId\":570,\"journal\":{\"name\":\"Frontiers in Energy\",\"volume\":\"18 4\",\"pages\":\"525 - 534\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11708-024-0952-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-024-0952-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
近年来,甲烷干重整(DRM)反应因其对两种主要温室气体的有效利用而受到广泛关注。用于 DRM 的支撑镍基催化剂表现出与颗粒尺寸的强烈相关性,但其中涉及的反应机理仍不清楚。本研究利用密度泛函理论探讨了 DRM 反应中金属颗粒大小对 CO2 活化和 CO 生成的影响。构建了 Nix/MgO(x = 13、25、37)来研究 DRM 反应过程中 CO2 的活化和 CO 的形成。研究发现,二氧化碳在活化之前更倾向于在 Nix/MgO 上发生化学吸附。随着颗粒大小的变化,CO2 在催化剂上的主要活化途径也发生了变化。在最小的 Ni13/MgO 上,二氧化碳倾向于直接解离,而在较大的 Ni25/MgO 和 Ni37/MgO 上,二氧化碳的加氢解离在动力学上更为有利。与 Ni13/MgO 和 Ni37/MgO 相比,表面 C 原子的氧化和 CH 的氧化在 Ni25/MgO 上更容易发生。这表明 C 原子不太可能在 Ni25 颗粒上形成,而且更容易被氧化。在某种程度上,这些结果表明 Ni25/MgO 具有更强的抗碳形成能力。
Impact of Ni particle size on CO2 activation and CO formation during reforming process: A density functional theory study
In recent years, the dry reforming of methane (DRM) reaction has gained widespread attention due to its effective utilization of two major greenhouse gases. Supported Ni-based catalysts for DRM exhibit a strong dependence on particle size, however, the reaction mechanisms involved remain unclear. In this work, the effect of metal particle size on CO2 activation and CO formation was explored in the DRM reaction using the density functional theory. Nix/MgO (x = 13, 25, 37) was constructed to investigate the CO2 activation and the formation of CO during the DRM reaction. It is found that CO2 is more inclined to undergo chemisorption on Nix/MgO before activation. With the variation in particle size, the main activation pathway of CO2 on the catalyst changes. On the smallest Ni13/MgO, CO2 tends to directly dissociate, while on the larger Ni25/MgO and Ni37/MgO, the hydrogenation dissociation of CO2 is more kinetically favorable. Compared to Ni13/MgO and Ni37/MgO, the oxidation of surface C atoms and the oxidation of CH occur more readily on Ni25/MgO. This indicates that C atoms are less likely to form on Ni25 particle and are more easily to be oxidized. To some extent, the results suggest that Ni25/MgO exhibits superior resistance to carbon formation.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue