{"title":"利用薄传输层材料加强对有机发光二极管外部量子效率的分析","authors":"P. Santhoshini, K. HelenPrabha","doi":"10.1007/s10825-024-02197-y","DOIUrl":null,"url":null,"abstract":"<div><p>OLED technology, a revolutionary approach to display and lighting, offers thin, flexible, and vibrant solutions that redefine the visual experience in various devices. External quantum efficiency, a key metric, provides valuable insights into how effectively these devices convert electrical energy into light, guiding efforts to enhance efficiency and optimize OLED technology. This crucial factor, often affected by charge imbalance, non-radiative processes, energy losses, material limitations, device architecture, and design, can be significantly improved. The choice of material selection can impact the ability of the OLED to convert injected charges into light effectively. The transport layers facilitate the movement of charge carriers (electrons and holes) within the device, influencing light emission efficiency. In this proposed work, the introduction of organic materials in electron and hole transport layers can potentially improve the external quantum efficiency by up to 11.2%, a significant advancement that can be analyzed through electrical and optical characterization.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 5","pages":"977 - 985"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the analysis of external quantum efficiency in OLEDs utilizing thin transport layer materials\",\"authors\":\"P. Santhoshini, K. HelenPrabha\",\"doi\":\"10.1007/s10825-024-02197-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>OLED technology, a revolutionary approach to display and lighting, offers thin, flexible, and vibrant solutions that redefine the visual experience in various devices. External quantum efficiency, a key metric, provides valuable insights into how effectively these devices convert electrical energy into light, guiding efforts to enhance efficiency and optimize OLED technology. This crucial factor, often affected by charge imbalance, non-radiative processes, energy losses, material limitations, device architecture, and design, can be significantly improved. The choice of material selection can impact the ability of the OLED to convert injected charges into light effectively. The transport layers facilitate the movement of charge carriers (electrons and holes) within the device, influencing light emission efficiency. In this proposed work, the introduction of organic materials in electron and hole transport layers can potentially improve the external quantum efficiency by up to 11.2%, a significant advancement that can be analyzed through electrical and optical characterization.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"23 5\",\"pages\":\"977 - 985\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02197-y\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02197-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhancing the analysis of external quantum efficiency in OLEDs utilizing thin transport layer materials
OLED technology, a revolutionary approach to display and lighting, offers thin, flexible, and vibrant solutions that redefine the visual experience in various devices. External quantum efficiency, a key metric, provides valuable insights into how effectively these devices convert electrical energy into light, guiding efforts to enhance efficiency and optimize OLED technology. This crucial factor, often affected by charge imbalance, non-radiative processes, energy losses, material limitations, device architecture, and design, can be significantly improved. The choice of material selection can impact the ability of the OLED to convert injected charges into light effectively. The transport layers facilitate the movement of charge carriers (electrons and holes) within the device, influencing light emission efficiency. In this proposed work, the introduction of organic materials in electron and hole transport layers can potentially improve the external quantum efficiency by up to 11.2%, a significant advancement that can be analyzed through electrical and optical characterization.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.