Elia Marin, Daniel Muhammad Bin Idrus, Francesco Boschetto, Taigi Honma, Tetsuya Adachi, Alex Lanzutti, Alfredo Rondinella, Wenliang Zhu, Tatsuro Morita, Narisato Kanamura, Toshiro Yamamoto, Giuseppe Pezzotti
{"title":"β-胡萝卜素增强聚甲基丙烯酸甲酯:生物活性骨水泥向前迈进了一步","authors":"Elia Marin, Daniel Muhammad Bin Idrus, Francesco Boschetto, Taigi Honma, Tetsuya Adachi, Alex Lanzutti, Alfredo Rondinella, Wenliang Zhu, Tatsuro Morita, Narisato Kanamura, Toshiro Yamamoto, Giuseppe Pezzotti","doi":"10.1002/pat.6500","DOIUrl":null,"url":null,"abstract":"By making use of the outstanding osteoinductive effects of β‐carotene, in this innovative research, we investigate the potential for application of β‐carotene‐reinforced PMMA resins. Different amounts of β‐carotene, from 0% to 5%, have been mixed with standard bone cements and characterized by various spectroscopic and microscopic techniques before testing with KUSA‐A1 murine mesenchymal cells. In vitro results showed that not only the amount of bone produced by the cells on the composite is comparable if not superior to modern bioglasses but also both adhesion and cellular proliferation are strongly promoted by the presence of β‐carotene. The increased biological properties came at the price of a small loss in elastic modulus, but it was observed that the presence of β‐carotene leads to an increase of ultimate strength, reaching an increase of about 30% at a concentration of about 2.5%. The enhanced bioactivity and mechanical strength make β‐carotene‐reinforced PMMA a promising, innovative material for biomedical applications.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"17 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"β‐Carotene‐reinforced Poly(methyl methacrylate): A step forward in bioactive bone cements\",\"authors\":\"Elia Marin, Daniel Muhammad Bin Idrus, Francesco Boschetto, Taigi Honma, Tetsuya Adachi, Alex Lanzutti, Alfredo Rondinella, Wenliang Zhu, Tatsuro Morita, Narisato Kanamura, Toshiro Yamamoto, Giuseppe Pezzotti\",\"doi\":\"10.1002/pat.6500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By making use of the outstanding osteoinductive effects of β‐carotene, in this innovative research, we investigate the potential for application of β‐carotene‐reinforced PMMA resins. Different amounts of β‐carotene, from 0% to 5%, have been mixed with standard bone cements and characterized by various spectroscopic and microscopic techniques before testing with KUSA‐A1 murine mesenchymal cells. In vitro results showed that not only the amount of bone produced by the cells on the composite is comparable if not superior to modern bioglasses but also both adhesion and cellular proliferation are strongly promoted by the presence of β‐carotene. The increased biological properties came at the price of a small loss in elastic modulus, but it was observed that the presence of β‐carotene leads to an increase of ultimate strength, reaching an increase of about 30% at a concentration of about 2.5%. The enhanced bioactivity and mechanical strength make β‐carotene‐reinforced PMMA a promising, innovative material for biomedical applications.\",\"PeriodicalId\":20382,\"journal\":{\"name\":\"Polymers for Advanced Technologies\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers for Advanced Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pat.6500\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6500","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
β‐Carotene‐reinforced Poly(methyl methacrylate): A step forward in bioactive bone cements
By making use of the outstanding osteoinductive effects of β‐carotene, in this innovative research, we investigate the potential for application of β‐carotene‐reinforced PMMA resins. Different amounts of β‐carotene, from 0% to 5%, have been mixed with standard bone cements and characterized by various spectroscopic and microscopic techniques before testing with KUSA‐A1 murine mesenchymal cells. In vitro results showed that not only the amount of bone produced by the cells on the composite is comparable if not superior to modern bioglasses but also both adhesion and cellular proliferation are strongly promoted by the presence of β‐carotene. The increased biological properties came at the price of a small loss in elastic modulus, but it was observed that the presence of β‐carotene leads to an increase of ultimate strength, reaching an increase of about 30% at a concentration of about 2.5%. The enhanced bioactivity and mechanical strength make β‐carotene‐reinforced PMMA a promising, innovative material for biomedical applications.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.