Yilin Feng, Ran Xu, Ying Li, Beibo Zhang, Jiali Wang, Zhi Chen, Luoxin Wang, Hua Wang
{"title":"高负载阻燃剂填充二氧化硅气凝胶颗粒增强的 PVA 基多彩涂料复合材料的制备与性能","authors":"Yilin Feng, Ran Xu, Ying Li, Beibo Zhang, Jiali Wang, Zhi Chen, Luoxin Wang, Hua Wang","doi":"10.1007/s00396-024-05292-5","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrophilic mesoporous silica aerogel particles were synthesized via self-assembly of amphiphilic polymer (Ph8-PEG6-PEOS) and its instantaneous hydrolysis and condensation in the alkaline environment. Meanwhile, the capture and encapsulation of flame retardant (IPPP) and oil soluble dyes were successively completed during the two processes above. Observed by thermal field scanning electron microscopy (TFESEM), the average diameter of aerogel particles reached about 10 µm. BET surface area analysis displayed that the existence of oil-phase component (IPPP) can result in the expansion of pore diameter, and promote the evolution of mesopores into macropores. Then, IPPP@SiO<sub>2</sub> aerogel particles were utilized to improve the flame retardancy of polyvinyl alcohol (PVA) coatings implemented onto cotton yarns, by employing developed knife coating procedure in an aqueous suspension. The thermal stabilities and flammability behaviors of the samples were evaluated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), and vertical burning test, respectively. Both thermal decomposition temperature and LOI value of coating composites gradually increased with the increment of IPPP@SiO<sub>2</sub>-n (<i>n</i> = 10, 30, 50, 70), attaching to the synchronous advancement in stretching property. Furthermore, coatings were thickened by degrees from 0.4 to 4 mm, based on knife coating in multi-stage layer-by-layer mode, to build an ordered porous structure with the assisted adhesion of PVA. The following sintering preserved the close packing of silica aerogel particles and facilitated the formation of a coherent porous monolithic material with excellent thermal insulation performance.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 10","pages":"1557 - 1571"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and property of PVA-based colorful coating composite reinforced with silica aerogel particles filled by high-loaded flame retardant\",\"authors\":\"Yilin Feng, Ran Xu, Ying Li, Beibo Zhang, Jiali Wang, Zhi Chen, Luoxin Wang, Hua Wang\",\"doi\":\"10.1007/s00396-024-05292-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hydrophilic mesoporous silica aerogel particles were synthesized via self-assembly of amphiphilic polymer (Ph8-PEG6-PEOS) and its instantaneous hydrolysis and condensation in the alkaline environment. Meanwhile, the capture and encapsulation of flame retardant (IPPP) and oil soluble dyes were successively completed during the two processes above. Observed by thermal field scanning electron microscopy (TFESEM), the average diameter of aerogel particles reached about 10 µm. BET surface area analysis displayed that the existence of oil-phase component (IPPP) can result in the expansion of pore diameter, and promote the evolution of mesopores into macropores. Then, IPPP@SiO<sub>2</sub> aerogel particles were utilized to improve the flame retardancy of polyvinyl alcohol (PVA) coatings implemented onto cotton yarns, by employing developed knife coating procedure in an aqueous suspension. The thermal stabilities and flammability behaviors of the samples were evaluated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), and vertical burning test, respectively. Both thermal decomposition temperature and LOI value of coating composites gradually increased with the increment of IPPP@SiO<sub>2</sub>-n (<i>n</i> = 10, 30, 50, 70), attaching to the synchronous advancement in stretching property. Furthermore, coatings were thickened by degrees from 0.4 to 4 mm, based on knife coating in multi-stage layer-by-layer mode, to build an ordered porous structure with the assisted adhesion of PVA. The following sintering preserved the close packing of silica aerogel particles and facilitated the formation of a coherent porous monolithic material with excellent thermal insulation performance.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":\"302 10\",\"pages\":\"1557 - 1571\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00396-024-05292-5\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05292-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Preparation and property of PVA-based colorful coating composite reinforced with silica aerogel particles filled by high-loaded flame retardant
Hydrophilic mesoporous silica aerogel particles were synthesized via self-assembly of amphiphilic polymer (Ph8-PEG6-PEOS) and its instantaneous hydrolysis and condensation in the alkaline environment. Meanwhile, the capture and encapsulation of flame retardant (IPPP) and oil soluble dyes were successively completed during the two processes above. Observed by thermal field scanning electron microscopy (TFESEM), the average diameter of aerogel particles reached about 10 µm. BET surface area analysis displayed that the existence of oil-phase component (IPPP) can result in the expansion of pore diameter, and promote the evolution of mesopores into macropores. Then, IPPP@SiO2 aerogel particles were utilized to improve the flame retardancy of polyvinyl alcohol (PVA) coatings implemented onto cotton yarns, by employing developed knife coating procedure in an aqueous suspension. The thermal stabilities and flammability behaviors of the samples were evaluated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), and vertical burning test, respectively. Both thermal decomposition temperature and LOI value of coating composites gradually increased with the increment of IPPP@SiO2-n (n = 10, 30, 50, 70), attaching to the synchronous advancement in stretching property. Furthermore, coatings were thickened by degrees from 0.4 to 4 mm, based on knife coating in multi-stage layer-by-layer mode, to build an ordered porous structure with the assisted adhesion of PVA. The following sintering preserved the close packing of silica aerogel particles and facilitated the formation of a coherent porous monolithic material with excellent thermal insulation performance.
期刊介绍:
Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.