{"title":"加强雨水管网溢流预测:研究集合学习模型","authors":"Samira Boughandjioua, Fares Laouacheria, Nabiha Azizi","doi":"10.1007/s11600-024-01407-2","DOIUrl":null,"url":null,"abstract":"<p>This study addresses the critical issue of urban flooding caused by stormwater network overflow, necessitating unified and efficient management measures to handle increasing water volumes and the effects of climate change. The proposed approach aims to improve the precision and efficiency of overflow rate predictions by investigating advanced machine learning algorithms, specifically ensemble methods such as gradient boosting and random forest algorithms. The main contribution lies in introducing the SWN-ML approach, which integrates hydraulic simulations using MIKE + with machine learning to predict average overflow rates for various rainfall durations and return periods. Mike + model was calibrated for the only available observed data of water depth at the outlet point during the storm event of February 4, 2019. The datasets for model calibration used in ML models consisted of many input variables such as peak flow, max depth, length, slope, roughness, and diameter and average overflow rate as output variable. Experimental results show that these methods are effective under a variety of scenarios, with the ensemble methods consistently outperforming classical machine learning models. For example, the models exhibit similar performance metrics with an MSE of 0.023, RMSE of 0.15, and MAE of 0.101 for a 2-h rainfall duration and a 10-year return period. Correlation analysis further confirms the strong correlation between ensemble method predictions and MIKE + simulated models, with values ranging between 0.72 and 0.80, indicating their effectiveness in capturing stormwater network dynamics. These results validate the utility of ensemble learning models in predicting overflow rates in flood-prone urban areas. The study highlights the potential of ensemble learning models in forecasting overflow rates, offering valuable insights for the development of early warning systems and flood mitigation strategies.</p>","PeriodicalId":6988,"journal":{"name":"Acta Geophysica","volume":"109 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing stormwater network overflow prediction: investigation of ensemble learning models\",\"authors\":\"Samira Boughandjioua, Fares Laouacheria, Nabiha Azizi\",\"doi\":\"10.1007/s11600-024-01407-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study addresses the critical issue of urban flooding caused by stormwater network overflow, necessitating unified and efficient management measures to handle increasing water volumes and the effects of climate change. The proposed approach aims to improve the precision and efficiency of overflow rate predictions by investigating advanced machine learning algorithms, specifically ensemble methods such as gradient boosting and random forest algorithms. The main contribution lies in introducing the SWN-ML approach, which integrates hydraulic simulations using MIKE + with machine learning to predict average overflow rates for various rainfall durations and return periods. Mike + model was calibrated for the only available observed data of water depth at the outlet point during the storm event of February 4, 2019. The datasets for model calibration used in ML models consisted of many input variables such as peak flow, max depth, length, slope, roughness, and diameter and average overflow rate as output variable. Experimental results show that these methods are effective under a variety of scenarios, with the ensemble methods consistently outperforming classical machine learning models. For example, the models exhibit similar performance metrics with an MSE of 0.023, RMSE of 0.15, and MAE of 0.101 for a 2-h rainfall duration and a 10-year return period. Correlation analysis further confirms the strong correlation between ensemble method predictions and MIKE + simulated models, with values ranging between 0.72 and 0.80, indicating their effectiveness in capturing stormwater network dynamics. These results validate the utility of ensemble learning models in predicting overflow rates in flood-prone urban areas. The study highlights the potential of ensemble learning models in forecasting overflow rates, offering valuable insights for the development of early warning systems and flood mitigation strategies.</p>\",\"PeriodicalId\":6988,\"journal\":{\"name\":\"Acta Geophysica\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11600-024-01407-2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11600-024-01407-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing stormwater network overflow prediction: investigation of ensemble learning models
This study addresses the critical issue of urban flooding caused by stormwater network overflow, necessitating unified and efficient management measures to handle increasing water volumes and the effects of climate change. The proposed approach aims to improve the precision and efficiency of overflow rate predictions by investigating advanced machine learning algorithms, specifically ensemble methods such as gradient boosting and random forest algorithms. The main contribution lies in introducing the SWN-ML approach, which integrates hydraulic simulations using MIKE + with machine learning to predict average overflow rates for various rainfall durations and return periods. Mike + model was calibrated for the only available observed data of water depth at the outlet point during the storm event of February 4, 2019. The datasets for model calibration used in ML models consisted of many input variables such as peak flow, max depth, length, slope, roughness, and diameter and average overflow rate as output variable. Experimental results show that these methods are effective under a variety of scenarios, with the ensemble methods consistently outperforming classical machine learning models. For example, the models exhibit similar performance metrics with an MSE of 0.023, RMSE of 0.15, and MAE of 0.101 for a 2-h rainfall duration and a 10-year return period. Correlation analysis further confirms the strong correlation between ensemble method predictions and MIKE + simulated models, with values ranging between 0.72 and 0.80, indicating their effectiveness in capturing stormwater network dynamics. These results validate the utility of ensemble learning models in predicting overflow rates in flood-prone urban areas. The study highlights the potential of ensemble learning models in forecasting overflow rates, offering valuable insights for the development of early warning systems and flood mitigation strategies.
期刊介绍:
Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.