Chang Liu, Linhua Li, Li Li, Qingyin Li, Jing Liu, Chunle Zhang, Zhengjiang Cao, Liang Ma, Xiaoxi Zeng and Ping Fu
{"title":"用于预防肾缺血/再灌注损伤的超小型木兰醇/易倍申纳米细胞","authors":"Chang Liu, Linhua Li, Li Li, Qingyin Li, Jing Liu, Chunle Zhang, Zhengjiang Cao, Liang Ma, Xiaoxi Zeng and Ping Fu","doi":"10.1039/D4BM00614C","DOIUrl":null,"url":null,"abstract":"<p >Renal ischemia/reperfusion injury (RIRI) is an inevitable complication following kidney transplantation surgery, accompanied by the generation of a large amount of free radicals. A cascade of events including oxidative stress, extreme inflammation, cellular apoptosis, and thrombosis disrupts the microenvironment of renal cells and the hematological system, ultimately leading to the development of acute kidney injury (AKI). The current research primarily focuses on reducing inflammation and mitigating damage to renal cells through antioxidative approaches. However, studies on simultaneously modulating the renal hematologic system remain unreported. Herein, potent and novel drug-loaded nanomicelles can be efficiently self-assembled with magnolol (MG) and ebselen (EBS) by π–π conjugation, hydrophobic action and the surfactant properties of Tween-80. The ultrasmall MG/EBS nanomicelles (average particle size: 10–25 nm) not only fully preserve the activity of both drugs, but also greatly enhance drug utilization (encapsulation rates: MG: 90.1%; EBS: 49.3%) and reduce drug toxicity. Furthermore, EBS, as a glutathione peroxidase mimic and NO catalyst, combines with the multifunctional MG to scavenge free radicals and hydroperoxides, significantly inhibiting inflammation and thrombosis while effectively preventing apoptosis of vascular endothelial cells and renal tubular epithelial cells. This study provides a new strategy and theoretical foundation for the simultaneous regulation of kidney cells and blood microenvironment stability.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 17","pages":" 4407-4426"},"PeriodicalIF":5.7000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasmall magnolol/ebselen nanomicelles for preventing renal ischemia/reperfusion injury†\",\"authors\":\"Chang Liu, Linhua Li, Li Li, Qingyin Li, Jing Liu, Chunle Zhang, Zhengjiang Cao, Liang Ma, Xiaoxi Zeng and Ping Fu\",\"doi\":\"10.1039/D4BM00614C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Renal ischemia/reperfusion injury (RIRI) is an inevitable complication following kidney transplantation surgery, accompanied by the generation of a large amount of free radicals. A cascade of events including oxidative stress, extreme inflammation, cellular apoptosis, and thrombosis disrupts the microenvironment of renal cells and the hematological system, ultimately leading to the development of acute kidney injury (AKI). The current research primarily focuses on reducing inflammation and mitigating damage to renal cells through antioxidative approaches. However, studies on simultaneously modulating the renal hematologic system remain unreported. Herein, potent and novel drug-loaded nanomicelles can be efficiently self-assembled with magnolol (MG) and ebselen (EBS) by π–π conjugation, hydrophobic action and the surfactant properties of Tween-80. The ultrasmall MG/EBS nanomicelles (average particle size: 10–25 nm) not only fully preserve the activity of both drugs, but also greatly enhance drug utilization (encapsulation rates: MG: 90.1%; EBS: 49.3%) and reduce drug toxicity. Furthermore, EBS, as a glutathione peroxidase mimic and NO catalyst, combines with the multifunctional MG to scavenge free radicals and hydroperoxides, significantly inhibiting inflammation and thrombosis while effectively preventing apoptosis of vascular endothelial cells and renal tubular epithelial cells. This study provides a new strategy and theoretical foundation for the simultaneous regulation of kidney cells and blood microenvironment stability.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" 17\",\"pages\":\" 4407-4426\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/bm/d4bm00614c\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/bm/d4bm00614c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Ultrasmall magnolol/ebselen nanomicelles for preventing renal ischemia/reperfusion injury†
Renal ischemia/reperfusion injury (RIRI) is an inevitable complication following kidney transplantation surgery, accompanied by the generation of a large amount of free radicals. A cascade of events including oxidative stress, extreme inflammation, cellular apoptosis, and thrombosis disrupts the microenvironment of renal cells and the hematological system, ultimately leading to the development of acute kidney injury (AKI). The current research primarily focuses on reducing inflammation and mitigating damage to renal cells through antioxidative approaches. However, studies on simultaneously modulating the renal hematologic system remain unreported. Herein, potent and novel drug-loaded nanomicelles can be efficiently self-assembled with magnolol (MG) and ebselen (EBS) by π–π conjugation, hydrophobic action and the surfactant properties of Tween-80. The ultrasmall MG/EBS nanomicelles (average particle size: 10–25 nm) not only fully preserve the activity of both drugs, but also greatly enhance drug utilization (encapsulation rates: MG: 90.1%; EBS: 49.3%) and reduce drug toxicity. Furthermore, EBS, as a glutathione peroxidase mimic and NO catalyst, combines with the multifunctional MG to scavenge free radicals and hydroperoxides, significantly inhibiting inflammation and thrombosis while effectively preventing apoptosis of vascular endothelial cells and renal tubular epithelial cells. This study provides a new strategy and theoretical foundation for the simultaneous regulation of kidney cells and blood microenvironment stability.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.