随机微分方程驯服指数积分器的弱收敛性

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Utku Erdoğan, Gabriel J. Lord
{"title":"随机微分方程驯服指数积分器的弱收敛性","authors":"Utku Erdoğan, Gabriel J. Lord","doi":"10.1007/s10543-024-01029-6","DOIUrl":null,"url":null,"abstract":"<p>We prove weak convergence of order one for a class of exponential based integrators for SDEs with non-globally Lipschitz drift. Our analysis covers tamed versions of Geometric Brownian Motion (GBM) based methods as well as the standard exponential schemes. The numerical performance of both the GBM and exponential tamed methods through four different multi-level Monte Carlo techniques are compared. We observe that for linear noise the standard exponential tamed method requires severe restrictions on the step size unlike the GBM tamed method.</p>","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"64 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak convergence of tamed exponential integrators for stochastic differential equations\",\"authors\":\"Utku Erdoğan, Gabriel J. Lord\",\"doi\":\"10.1007/s10543-024-01029-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove weak convergence of order one for a class of exponential based integrators for SDEs with non-globally Lipschitz drift. Our analysis covers tamed versions of Geometric Brownian Motion (GBM) based methods as well as the standard exponential schemes. The numerical performance of both the GBM and exponential tamed methods through four different multi-level Monte Carlo techniques are compared. We observe that for linear noise the standard exponential tamed method requires severe restrictions on the step size unlike the GBM tamed method.</p>\",\"PeriodicalId\":55351,\"journal\":{\"name\":\"BIT Numerical Mathematics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIT Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10543-024-01029-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10543-024-01029-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一类基于指数的积分器对具有非全局 Lipschitz 漂移的 SDE 的一阶弱收敛性。我们的分析涵盖了基于几何布朗运动(GBM)方法的驯化版本以及标准指数方案。通过四种不同的多级蒙特卡洛技术,我们对 GBM 和指数驯化方法的数值性能进行了比较。我们发现,与 GBM 驯化法不同,对于线性噪声,标准指数驯化法需要严格限制步长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Weak convergence of tamed exponential integrators for stochastic differential equations

Weak convergence of tamed exponential integrators for stochastic differential equations

We prove weak convergence of order one for a class of exponential based integrators for SDEs with non-globally Lipschitz drift. Our analysis covers tamed versions of Geometric Brownian Motion (GBM) based methods as well as the standard exponential schemes. The numerical performance of both the GBM and exponential tamed methods through four different multi-level Monte Carlo techniques are compared. We observe that for linear noise the standard exponential tamed method requires severe restrictions on the step size unlike the GBM tamed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BIT Numerical Mathematics
BIT Numerical Mathematics 数学-计算机:软件工程
CiteScore
2.90
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信