Yuting Yang, Juyi Zhang, Bin Yang, Shiyu Liu, Wenjie Zhang, Xiaopeng Shen, Liwei Shi, Zhi Hong Hang
{"title":"非均质欺骗表面等离子元表面中的光子狄拉克波导","authors":"Yuting Yang, Juyi Zhang, Bin Yang, Shiyu Liu, Wenjie Zhang, Xiaopeng Shen, Liwei Shi, Zhi Hong Hang","doi":"10.1515/nanoph-2024-0200","DOIUrl":null,"url":null,"abstract":"The metamaterial with artificial synthetic gauge field has been proved as an excellent platform to manipulate the transport of the electromagnetic wave. Here we propose an inhomogeneous spoof surface plasmonic metasurface to construct an in-plane pseudo-magnetic field, which is generated by engineering the gradient variation of the opened Dirac cone corresponding to spatially varying mass term. The chiral zeroth-order Landau level is induced by the strong pseudo-magnetic field. Based on the bulk state propagation of the chiral Landau level, the photonic Dirac waveguide is designed and demonstrated in the experimental measurement, in which the unidirectionally guided electromagnetic mode supports the high-capacity of energy transport. Without breaking the time-reversal symmetry, our proposal structure paves a new way for realizing the artificial in-plane magnetic field and photonic Dirac waveguide in metamaterial, and have potential for designing integrated photonic devices in practical applications.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"33 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photonic Dirac waveguide in inhomogeneous spoof surface plasmonic metasurfaces\",\"authors\":\"Yuting Yang, Juyi Zhang, Bin Yang, Shiyu Liu, Wenjie Zhang, Xiaopeng Shen, Liwei Shi, Zhi Hong Hang\",\"doi\":\"10.1515/nanoph-2024-0200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The metamaterial with artificial synthetic gauge field has been proved as an excellent platform to manipulate the transport of the electromagnetic wave. Here we propose an inhomogeneous spoof surface plasmonic metasurface to construct an in-plane pseudo-magnetic field, which is generated by engineering the gradient variation of the opened Dirac cone corresponding to spatially varying mass term. The chiral zeroth-order Landau level is induced by the strong pseudo-magnetic field. Based on the bulk state propagation of the chiral Landau level, the photonic Dirac waveguide is designed and demonstrated in the experimental measurement, in which the unidirectionally guided electromagnetic mode supports the high-capacity of energy transport. Without breaking the time-reversal symmetry, our proposal structure paves a new way for realizing the artificial in-plane magnetic field and photonic Dirac waveguide in metamaterial, and have potential for designing integrated photonic devices in practical applications.\",\"PeriodicalId\":19027,\"journal\":{\"name\":\"Nanophotonics\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/nanoph-2024-0200\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0200","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Photonic Dirac waveguide in inhomogeneous spoof surface plasmonic metasurfaces
The metamaterial with artificial synthetic gauge field has been proved as an excellent platform to manipulate the transport of the electromagnetic wave. Here we propose an inhomogeneous spoof surface plasmonic metasurface to construct an in-plane pseudo-magnetic field, which is generated by engineering the gradient variation of the opened Dirac cone corresponding to spatially varying mass term. The chiral zeroth-order Landau level is induced by the strong pseudo-magnetic field. Based on the bulk state propagation of the chiral Landau level, the photonic Dirac waveguide is designed and demonstrated in the experimental measurement, in which the unidirectionally guided electromagnetic mode supports the high-capacity of energy transport. Without breaking the time-reversal symmetry, our proposal structure paves a new way for realizing the artificial in-plane magnetic field and photonic Dirac waveguide in metamaterial, and have potential for designing integrated photonic devices in practical applications.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.