{"title":"光学显微镜和转录组学揭示胶质瘤手术荧光的起源","authors":"","doi":"10.1038/s41551-024-01218-2","DOIUrl":null,"url":null,"abstract":"Fluorescence guidance is utilized to increase the chances of complete tumour resection while balancing preservation of neurological function in glioma surgery. A multimodal optical microscope capable of imaging the histology and fluorescence of fresh human brain specimens revealed an unexpected pattern of fluorophore accumulation and a new means of visualizing macrophages during surgery.","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"8 6","pages":"670-671"},"PeriodicalIF":26.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical microscopy and transcriptomics reveal the origins of fluorescence in glioma surgery\",\"authors\":\"\",\"doi\":\"10.1038/s41551-024-01218-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorescence guidance is utilized to increase the chances of complete tumour resection while balancing preservation of neurological function in glioma surgery. A multimodal optical microscope capable of imaging the histology and fluorescence of fresh human brain specimens revealed an unexpected pattern of fluorophore accumulation and a new means of visualizing macrophages during surgery.\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"8 6\",\"pages\":\"670-671\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41551-024-01218-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41551-024-01218-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Optical microscopy and transcriptomics reveal the origins of fluorescence in glioma surgery
Fluorescence guidance is utilized to increase the chances of complete tumour resection while balancing preservation of neurological function in glioma surgery. A multimodal optical microscope capable of imaging the histology and fluorescence of fresh human brain specimens revealed an unexpected pattern of fluorophore accumulation and a new means of visualizing macrophages during surgery.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.