在聚(对苯二甲酸乙二醇酯)上制造抗反射纳米结构的高效环保方法

IF 1.7 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Hongkun Zhou, Lan Mu, Ruibin Liang, Linfeng Lan
{"title":"在聚(对苯二甲酸乙二醇酯)上制造抗反射纳米结构的高效环保方法","authors":"Hongkun Zhou,&nbsp;Lan Mu,&nbsp;Ruibin Liang,&nbsp;Linfeng Lan","doi":"10.1002/jsid.1336","DOIUrl":null,"url":null,"abstract":"<p>Antireflection surfaces are widely used in optical devices (such as vehicle display, solar cells, and architectural glass) to reduce the reflection and increase transmittance. Plasma etching shows great potential in making subwavelength antireflection structures for its advantage of scalable, low-cost, and applicable in flexible substrates. Here, we demonstrate an antireflection nanostructure by O<sub>2</sub> plasma etching on poly (ethylene terephthalate) (PET) substrate without additional corrosive gas species or antireflective coatings. Nanopores on the surface were formed due to the different etching rates of the organic region and silica region of the surface. The solar weighted average transmittance was improved from 91.6% to 94.8% for single-side treated PET with silica antiblocking layer. The transmission increment was attributed to the gradient refractive index of the nanostructured surface due to the elimination of step discontinuity in refractive index. The result shows a highly efficient, eco-friendly, solvent-free, economical, and sputtering target-free method for reducing the reflection and increasing the transmittance of the substrates.</p>","PeriodicalId":49979,"journal":{"name":"Journal of the Society for Information Display","volume":"32 7","pages":"530-536"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A highly efficient, eco-friendly method for antireflection nanostructures on poly (ethylene terephthalate)\",\"authors\":\"Hongkun Zhou,&nbsp;Lan Mu,&nbsp;Ruibin Liang,&nbsp;Linfeng Lan\",\"doi\":\"10.1002/jsid.1336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antireflection surfaces are widely used in optical devices (such as vehicle display, solar cells, and architectural glass) to reduce the reflection and increase transmittance. Plasma etching shows great potential in making subwavelength antireflection structures for its advantage of scalable, low-cost, and applicable in flexible substrates. Here, we demonstrate an antireflection nanostructure by O<sub>2</sub> plasma etching on poly (ethylene terephthalate) (PET) substrate without additional corrosive gas species or antireflective coatings. Nanopores on the surface were formed due to the different etching rates of the organic region and silica region of the surface. The solar weighted average transmittance was improved from 91.6% to 94.8% for single-side treated PET with silica antiblocking layer. The transmission increment was attributed to the gradient refractive index of the nanostructured surface due to the elimination of step discontinuity in refractive index. The result shows a highly efficient, eco-friendly, solvent-free, economical, and sputtering target-free method for reducing the reflection and increasing the transmittance of the substrates.</p>\",\"PeriodicalId\":49979,\"journal\":{\"name\":\"Journal of the Society for Information Display\",\"volume\":\"32 7\",\"pages\":\"530-536\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Society for Information Display\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jsid.1336\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Information Display","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsid.1336","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

抗反射表面被广泛应用于光学设备(如汽车显示屏、太阳能电池和建筑玻璃)中,以减少反射和增加透射率。等离子刻蚀具有可扩展、成本低、适用于柔性基底等优点,在制作亚波长抗反射结构方面显示出巨大潜力。在这里,我们展示了在聚(对苯二甲酸乙二醇酯)(PET)基底上通过 O2 等离子刻蚀技术制作的抗反射纳米结构,无需额外的腐蚀性气体或抗反射涂层。由于表面有机区和二氧化硅区的蚀刻速率不同,表面形成了纳米孔。经过单面处理并带有二氧化硅抗阻挡层的 PET 的太阳加权平均透射率从 91.6% 提高到 94.8%。透射率提高的原因是纳米结构表面的梯度折射率消除了折射率的阶跃不连续性。结果表明,这是一种高效、环保、无溶剂、经济、无溅射靶材的方法,可减少基底的反射并提高透射率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A highly efficient, eco-friendly method for antireflection nanostructures on poly (ethylene terephthalate)

A highly efficient, eco-friendly method for antireflection nanostructures on poly (ethylene terephthalate)

Antireflection surfaces are widely used in optical devices (such as vehicle display, solar cells, and architectural glass) to reduce the reflection and increase transmittance. Plasma etching shows great potential in making subwavelength antireflection structures for its advantage of scalable, low-cost, and applicable in flexible substrates. Here, we demonstrate an antireflection nanostructure by O2 plasma etching on poly (ethylene terephthalate) (PET) substrate without additional corrosive gas species or antireflective coatings. Nanopores on the surface were formed due to the different etching rates of the organic region and silica region of the surface. The solar weighted average transmittance was improved from 91.6% to 94.8% for single-side treated PET with silica antiblocking layer. The transmission increment was attributed to the gradient refractive index of the nanostructured surface due to the elimination of step discontinuity in refractive index. The result shows a highly efficient, eco-friendly, solvent-free, economical, and sputtering target-free method for reducing the reflection and increasing the transmittance of the substrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Society for Information Display
Journal of the Society for Information Display 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.70%
发文量
98
审稿时长
3 months
期刊介绍: The Journal of the Society for Information Display publishes original works dealing with the theory and practice of information display. Coverage includes materials, devices and systems; the underlying chemistry, physics, physiology and psychology; measurement techniques, manufacturing technologies; and all aspects of the interaction between equipment and its users. Review articles are also published in all of these areas. Occasional special issues or sections consist of collections of papers on specific topical areas or collections of full length papers based in part on oral or poster presentations given at SID sponsored conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信