{"title":"在氧化铟锡表面添加聚(3,4-亚乙二氧基噻吩)聚苯乙烯磺酸盐并在发光层添加氚化掺杂剂可提高有机发光二极管的寿命","authors":"Fuh-Shyang Juang, Yi-Jing Lin, Yi-Sheng Li, Hong-Kai Chen, Yu-Hsin Tuan, Jay-Teng Tsai, Yu-Sheng Tsai","doi":"10.1002/jsid.1337","DOIUrl":null,"url":null,"abstract":"<p>In this study, the PEDOT:PSS conductive polymer material was spin-coated on the ITO surface to improve the surface roughness of the ITO and reduce the spikes on the ITO surface, so as to avoid the burning spots generated in the green organic light emitting diode (OLED) when the voltage was applied to light it up. The OLED emitting is successfully survived. Deuterium atoms (isotopes of hydrogen) with heavier atomic weights can strengthen C-D bonds, slow down the kinetic rate for unwarranted chemical reactions, and improve the performance and stability of OLEDs. In this study, deuterated D-Ir (mppy)<sub>3</sub> was employed as the dopant in the emitting layer of green OLED to replace the general Ir (mppy)<sub>3</sub> to improve the optoelectronic properties and extend the lifetime of green OLED. At a constant voltage of 4 V, the initial luminance and half lifetime of general Ir (mppy)<sub>3</sub> doped and deuterated D-Ir (mppy)<sub>3</sub> doped OLEDs are 188.1 cd/m<sup>2</sup>, 7.2 h and 438.3 cd/m<sup>2</sup>, 42.8 h, respectively. It is shown that doping the deuterated D-Ir (mppy)<sub>3</sub> material in the emitting layer has the effect of prolonging the lifetime of OLED. Compared with the general Ir (mppy)<sub>3</sub>, the lifetime of deuterated D-Ir (mppy)<sub>3</sub> doped OLED achieved an extension by 5.9 times.</p>","PeriodicalId":49979,"journal":{"name":"Journal of the Society for Information Display","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jsid.1337","citationCount":"0","resultStr":"{\"title\":\"The lifetime improvement of organic light-emitting diodes with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate on indium-tin-oxide surface and deuterated dopant in emitting layer\",\"authors\":\"Fuh-Shyang Juang, Yi-Jing Lin, Yi-Sheng Li, Hong-Kai Chen, Yu-Hsin Tuan, Jay-Teng Tsai, Yu-Sheng Tsai\",\"doi\":\"10.1002/jsid.1337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the PEDOT:PSS conductive polymer material was spin-coated on the ITO surface to improve the surface roughness of the ITO and reduce the spikes on the ITO surface, so as to avoid the burning spots generated in the green organic light emitting diode (OLED) when the voltage was applied to light it up. The OLED emitting is successfully survived. Deuterium atoms (isotopes of hydrogen) with heavier atomic weights can strengthen C-D bonds, slow down the kinetic rate for unwarranted chemical reactions, and improve the performance and stability of OLEDs. In this study, deuterated D-Ir (mppy)<sub>3</sub> was employed as the dopant in the emitting layer of green OLED to replace the general Ir (mppy)<sub>3</sub> to improve the optoelectronic properties and extend the lifetime of green OLED. At a constant voltage of 4 V, the initial luminance and half lifetime of general Ir (mppy)<sub>3</sub> doped and deuterated D-Ir (mppy)<sub>3</sub> doped OLEDs are 188.1 cd/m<sup>2</sup>, 7.2 h and 438.3 cd/m<sup>2</sup>, 42.8 h, respectively. It is shown that doping the deuterated D-Ir (mppy)<sub>3</sub> material in the emitting layer has the effect of prolonging the lifetime of OLED. Compared with the general Ir (mppy)<sub>3</sub>, the lifetime of deuterated D-Ir (mppy)<sub>3</sub> doped OLED achieved an extension by 5.9 times.</p>\",\"PeriodicalId\":49979,\"journal\":{\"name\":\"Journal of the Society for Information Display\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jsid.1337\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Society for Information Display\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jsid.1337\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Society for Information Display","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsid.1337","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本研究将 PEDOT:PSS 导电聚合物材料旋涂在 ITO 表面,以改善 ITO 的表面粗糙度,减少 ITO 表面的尖刺,从而避免绿色有机发光二极管(OLED)在加电压点亮时产生烧斑。OLED 发光成功。原子量更重的氘原子(氢的同位素)可以强化 C-D 键,减缓不必要的化学反应的动力学速率,提高有机发光二极管的性能和稳定性。本研究采用氚代 D-Ir (mppy)3 作为绿色有机发光二极管发射层的掺杂剂,以取代一般的 Ir (mppy)3,从而改善绿色有机发光二极管的光电性能并延长其使用寿命。在 4 V 的恒定电压下,掺杂普通 Ir (mppy)3 和掺杂氘代 D-Ir (mppy)3 的 OLED 的初始亮度和半衰期分别为 188.1 cd/m2、7.2 h 和 438.3 cd/m2、42.8 h。这表明,在发光层中掺入氚代 D-Ir (mppy)3 材料具有延长 OLED 寿命的效果。与一般的 Ir (mppy)3 相比,掺杂氚代 D-Ir (mppy)3 的有机发光二极管的寿命延长了 5.9 倍。
The lifetime improvement of organic light-emitting diodes with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate on indium-tin-oxide surface and deuterated dopant in emitting layer
In this study, the PEDOT:PSS conductive polymer material was spin-coated on the ITO surface to improve the surface roughness of the ITO and reduce the spikes on the ITO surface, so as to avoid the burning spots generated in the green organic light emitting diode (OLED) when the voltage was applied to light it up. The OLED emitting is successfully survived. Deuterium atoms (isotopes of hydrogen) with heavier atomic weights can strengthen C-D bonds, slow down the kinetic rate for unwarranted chemical reactions, and improve the performance and stability of OLEDs. In this study, deuterated D-Ir (mppy)3 was employed as the dopant in the emitting layer of green OLED to replace the general Ir (mppy)3 to improve the optoelectronic properties and extend the lifetime of green OLED. At a constant voltage of 4 V, the initial luminance and half lifetime of general Ir (mppy)3 doped and deuterated D-Ir (mppy)3 doped OLEDs are 188.1 cd/m2, 7.2 h and 438.3 cd/m2, 42.8 h, respectively. It is shown that doping the deuterated D-Ir (mppy)3 material in the emitting layer has the effect of prolonging the lifetime of OLED. Compared with the general Ir (mppy)3, the lifetime of deuterated D-Ir (mppy)3 doped OLED achieved an extension by 5.9 times.
期刊介绍:
The Journal of the Society for Information Display publishes original works dealing with the theory and practice of information display. Coverage includes materials, devices and systems; the underlying chemistry, physics, physiology and psychology; measurement techniques, manufacturing technologies; and all aspects of the interaction between equipment and its users. Review articles are also published in all of these areas. Occasional special issues or sections consist of collections of papers on specific topical areas or collections of full length papers based in part on oral or poster presentations given at SID sponsored conferences.