E. M. Hodgson, J. McCalmont, R. Rowe, J. Whitaker, A. Holder, J. C. Clifton-Brown, J. Thornton, A. Hastings, P. R. H. Robson, R. J. Webster, K. Farrar, I. S. Donnison
{"title":"提高英国的马齿苋产量:效益、挑战和权衡","authors":"E. M. Hodgson, J. McCalmont, R. Rowe, J. Whitaker, A. Holder, J. C. Clifton-Brown, J. Thornton, A. Hastings, P. R. H. Robson, R. J. Webster, K. Farrar, I. S. Donnison","doi":"10.1111/gcbb.13177","DOIUrl":null,"url":null,"abstract":"<p>The UK sixth carbon budget has recommended domestic biomass supply should increase to meet growing demand, planting a minimum of 30,000 hectares of perennial energy crops a year by 2035, with a view to establishing 700,000 hectares by 2050 to meet the requirements of the balanced net zero pathway. Miscanthus is a key biomass crop to scale up domestic biomass production in the United Kingdom. A cohesive land management strategy, based on robust evidence, will be required to ensure upscaling of miscanthus cultivation maximizes the environmental and economic benefits and minimizes undesirable consequences. This review examines research into available land areas, environmental impacts, barriers to uptake, and the challenges, benefits, and trade-offs required to upscale miscanthus production on arable land and grassland in the United Kingdom. Expansion of perennial biomass crops has been considered best restricted to marginal land, less suited to food production. The review identifies a trade-off between avoiding competition with food production and a risk of encroaching on areas containing high-biodiversity or high-carbon stocks, such as semi-natural grasslands. If areas of land suitable for food production are needed to produce the biomass required for emission reduction, the review indicates there are multiple strategies for miscanthus to complement long-term food security rather than compete with it. On arable land, a miscanthus rotation with a cycle length of 10–20 years can be employed as fallow period for fields experiencing yield decline, soil fatigue, or persistent weed problems. On improved grassland areas, miscanthus presents an option for diversification, flood mitigation, and water quality improvement. Strategies need to be developed to integrate miscanthus into farming systems in a way that is profitable, sensitive to local demand, climate, and geography, and complements rather than competes with food production by increasing overall farm profitability and resilience.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 8","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13177","citationCount":"0","resultStr":"{\"title\":\"Upscaling miscanthus production in the United Kingdom: The benefits, challenges, and trade-offs\",\"authors\":\"E. M. Hodgson, J. McCalmont, R. Rowe, J. Whitaker, A. Holder, J. C. Clifton-Brown, J. Thornton, A. Hastings, P. R. H. Robson, R. J. Webster, K. Farrar, I. S. Donnison\",\"doi\":\"10.1111/gcbb.13177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The UK sixth carbon budget has recommended domestic biomass supply should increase to meet growing demand, planting a minimum of 30,000 hectares of perennial energy crops a year by 2035, with a view to establishing 700,000 hectares by 2050 to meet the requirements of the balanced net zero pathway. Miscanthus is a key biomass crop to scale up domestic biomass production in the United Kingdom. A cohesive land management strategy, based on robust evidence, will be required to ensure upscaling of miscanthus cultivation maximizes the environmental and economic benefits and minimizes undesirable consequences. This review examines research into available land areas, environmental impacts, barriers to uptake, and the challenges, benefits, and trade-offs required to upscale miscanthus production on arable land and grassland in the United Kingdom. Expansion of perennial biomass crops has been considered best restricted to marginal land, less suited to food production. The review identifies a trade-off between avoiding competition with food production and a risk of encroaching on areas containing high-biodiversity or high-carbon stocks, such as semi-natural grasslands. If areas of land suitable for food production are needed to produce the biomass required for emission reduction, the review indicates there are multiple strategies for miscanthus to complement long-term food security rather than compete with it. On arable land, a miscanthus rotation with a cycle length of 10–20 years can be employed as fallow period for fields experiencing yield decline, soil fatigue, or persistent weed problems. On improved grassland areas, miscanthus presents an option for diversification, flood mitigation, and water quality improvement. Strategies need to be developed to integrate miscanthus into farming systems in a way that is profitable, sensitive to local demand, climate, and geography, and complements rather than competes with food production by increasing overall farm profitability and resilience.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"16 8\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13177\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13177\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13177","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Upscaling miscanthus production in the United Kingdom: The benefits, challenges, and trade-offs
The UK sixth carbon budget has recommended domestic biomass supply should increase to meet growing demand, planting a minimum of 30,000 hectares of perennial energy crops a year by 2035, with a view to establishing 700,000 hectares by 2050 to meet the requirements of the balanced net zero pathway. Miscanthus is a key biomass crop to scale up domestic biomass production in the United Kingdom. A cohesive land management strategy, based on robust evidence, will be required to ensure upscaling of miscanthus cultivation maximizes the environmental and economic benefits and minimizes undesirable consequences. This review examines research into available land areas, environmental impacts, barriers to uptake, and the challenges, benefits, and trade-offs required to upscale miscanthus production on arable land and grassland in the United Kingdom. Expansion of perennial biomass crops has been considered best restricted to marginal land, less suited to food production. The review identifies a trade-off between avoiding competition with food production and a risk of encroaching on areas containing high-biodiversity or high-carbon stocks, such as semi-natural grasslands. If areas of land suitable for food production are needed to produce the biomass required for emission reduction, the review indicates there are multiple strategies for miscanthus to complement long-term food security rather than compete with it. On arable land, a miscanthus rotation with a cycle length of 10–20 years can be employed as fallow period for fields experiencing yield decline, soil fatigue, or persistent weed problems. On improved grassland areas, miscanthus presents an option for diversification, flood mitigation, and water quality improvement. Strategies need to be developed to integrate miscanthus into farming systems in a way that is profitable, sensitive to local demand, climate, and geography, and complements rather than competes with food production by increasing overall farm profitability and resilience.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.