{"title":"三维地幔对流模型中的羽状驱动俯冲终止现象","authors":"Erin Heilman, Thorsten W. Becker","doi":"10.1029/2024GC011523","DOIUrl":null,"url":null,"abstract":"<p>The effect of mantle plumes is secondary to that of subducting slabs for modern plate tectonics when considering plate driving forces. However, the impact of plumes on tectonics and planetary surface evolution may nonetheless have been significant. We use numerical mantle convection models in a 3-D spherical chunk geometry with damage rheology to study some of the dynamics of plume-slab interactions. Substantiating our earlier 2-D results, we observe a range of interaction scenarios, and that the plume-driven subduction terminations we had identified earlier persist in more realistic convective flow. We analyze the dynamics of plume affected subduction, including in terms of their geometry, frequency, and the overall effect of plumes on surface dynamics as a function of the fraction of internal to bottom heating. Some versions of such plume-slab interplay may be relevant for geologic events, for example, for the inferred ∼183 Ma Karoo large igneous province formation and associated slab disruption. More recent examples may include the impingement of the Afar plume underneath Africa leading to disruption of the Hellenic slab, and the current complex structure imaged for the subduction of the Nazca plate under South America. Our results imply that plumes may play a significant role not just in kick-starting plate tectonics, but also in major modifications of slab-driven plate motions, including for the present-day mantle.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011523","citationCount":"0","resultStr":"{\"title\":\"Plume-Driven Subduction Termination in 3-D Mantle Convection Models\",\"authors\":\"Erin Heilman, Thorsten W. Becker\",\"doi\":\"10.1029/2024GC011523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of mantle plumes is secondary to that of subducting slabs for modern plate tectonics when considering plate driving forces. However, the impact of plumes on tectonics and planetary surface evolution may nonetheless have been significant. We use numerical mantle convection models in a 3-D spherical chunk geometry with damage rheology to study some of the dynamics of plume-slab interactions. Substantiating our earlier 2-D results, we observe a range of interaction scenarios, and that the plume-driven subduction terminations we had identified earlier persist in more realistic convective flow. We analyze the dynamics of plume affected subduction, including in terms of their geometry, frequency, and the overall effect of plumes on surface dynamics as a function of the fraction of internal to bottom heating. Some versions of such plume-slab interplay may be relevant for geologic events, for example, for the inferred ∼183 Ma Karoo large igneous province formation and associated slab disruption. More recent examples may include the impingement of the Afar plume underneath Africa leading to disruption of the Hellenic slab, and the current complex structure imaged for the subduction of the Nazca plate under South America. Our results imply that plumes may play a significant role not just in kick-starting plate tectonics, but also in major modifications of slab-driven plate motions, including for the present-day mantle.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"25 7\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011523\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011523\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011523","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Plume-Driven Subduction Termination in 3-D Mantle Convection Models
The effect of mantle plumes is secondary to that of subducting slabs for modern plate tectonics when considering plate driving forces. However, the impact of plumes on tectonics and planetary surface evolution may nonetheless have been significant. We use numerical mantle convection models in a 3-D spherical chunk geometry with damage rheology to study some of the dynamics of plume-slab interactions. Substantiating our earlier 2-D results, we observe a range of interaction scenarios, and that the plume-driven subduction terminations we had identified earlier persist in more realistic convective flow. We analyze the dynamics of plume affected subduction, including in terms of their geometry, frequency, and the overall effect of plumes on surface dynamics as a function of the fraction of internal to bottom heating. Some versions of such plume-slab interplay may be relevant for geologic events, for example, for the inferred ∼183 Ma Karoo large igneous province formation and associated slab disruption. More recent examples may include the impingement of the Afar plume underneath Africa leading to disruption of the Hellenic slab, and the current complex structure imaged for the subduction of the Nazca plate under South America. Our results imply that plumes may play a significant role not just in kick-starting plate tectonics, but also in major modifications of slab-driven plate motions, including for the present-day mantle.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.