将人工智能增强型数据同化和不确定性量化应用于地质碳储存

IF 4.6 3区 工程技术 Q2 ENERGY & FUELS
Gabriel Serrão Seabra , Nikolaj T. Mücke , Vinicius Luiz Santos Silva , Denis Voskov , Femke C. Vossepoel
{"title":"将人工智能增强型数据同化和不确定性量化应用于地质碳储存","authors":"Gabriel Serrão Seabra ,&nbsp;Nikolaj T. Mücke ,&nbsp;Vinicius Luiz Santos Silva ,&nbsp;Denis Voskov ,&nbsp;Femke C. Vossepoel","doi":"10.1016/j.ijggc.2024.104190","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the integration of machine learning (ML) and data assimilation (DA) techniques, focusing on implementing surrogate models for Geological Carbon Storage (GCS) projects while maintaining the high fidelity physical results in posterior states. Initially, we evaluate the surrogate modeling capability of two distinct machine learning models, Fourier Neural Operators (FNOs) and Transformer UNet (T-UNet), in the context of CO<sub>2</sub> injection simulations within channelized reservoirs. We introduce the Surrogate-based hybrid ESMDA (SH-ESMDA), an adaptation of the traditional Ensemble Smoother with Multiple Data Assimilation (ESMDA). This method uses FNOs and T-UNet as surrogate models and has the potential to make the standard ESMDA process at least 50% faster or more, depending on the number of assimilation steps. Additionally, we introduce Surrogate-based Hybrid RML (SH-RML), a variational data assimilation approach that relies on the randomized maximum likelihood (RML) where both the FNO and the T-UNet enable the computation of gradients for the optimization of the objective function, and a high-fidelity model is employed for the computation of the posterior states. Our comparative analyses show that SH-RML offers a better uncertainty quantification when compared to the conventional ESMDA for the case study.</p></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"136 ","pages":"Article 104190"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1750583624001336/pdfft?md5=bccdad97e356d9b8d0adc3afc6073529&pid=1-s2.0-S1750583624001336-main.pdf","citationCount":"0","resultStr":"{\"title\":\"AI enhanced data assimilation and uncertainty quantification applied to Geological Carbon Storage\",\"authors\":\"Gabriel Serrão Seabra ,&nbsp;Nikolaj T. Mücke ,&nbsp;Vinicius Luiz Santos Silva ,&nbsp;Denis Voskov ,&nbsp;Femke C. Vossepoel\",\"doi\":\"10.1016/j.ijggc.2024.104190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the integration of machine learning (ML) and data assimilation (DA) techniques, focusing on implementing surrogate models for Geological Carbon Storage (GCS) projects while maintaining the high fidelity physical results in posterior states. Initially, we evaluate the surrogate modeling capability of two distinct machine learning models, Fourier Neural Operators (FNOs) and Transformer UNet (T-UNet), in the context of CO<sub>2</sub> injection simulations within channelized reservoirs. We introduce the Surrogate-based hybrid ESMDA (SH-ESMDA), an adaptation of the traditional Ensemble Smoother with Multiple Data Assimilation (ESMDA). This method uses FNOs and T-UNet as surrogate models and has the potential to make the standard ESMDA process at least 50% faster or more, depending on the number of assimilation steps. Additionally, we introduce Surrogate-based Hybrid RML (SH-RML), a variational data assimilation approach that relies on the randomized maximum likelihood (RML) where both the FNO and the T-UNet enable the computation of gradients for the optimization of the objective function, and a high-fidelity model is employed for the computation of the posterior states. Our comparative analyses show that SH-RML offers a better uncertainty quantification when compared to the conventional ESMDA for the case study.</p></div>\",\"PeriodicalId\":334,\"journal\":{\"name\":\"International Journal of Greenhouse Gas Control\",\"volume\":\"136 \",\"pages\":\"Article 104190\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1750583624001336/pdfft?md5=bccdad97e356d9b8d0adc3afc6073529&pid=1-s2.0-S1750583624001336-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Greenhouse Gas Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1750583624001336\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583624001336","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了机器学习(ML)与数据同化(DA)技术的整合,重点是为地质碳封存(GCS)项目实施代用模型,同时保持后验状态下的高保真物理结果。首先,我们评估了两种不同的机器学习模型--傅立叶神经运算器(FNOs)和变压器 UNet(T-UNet)--在渠道化储层内的二氧化碳注入模拟中的代用建模能力。我们介绍了基于代用的混合 ESMDA(SH-ESMDA),它是对传统的多重数据同化集合平滑器(ESMDA)的改进。这种方法使用 FNOs 和 T-UNet 作为代用模型,根据同化步骤的数量,有可能使标准 ESMDA 过程至少快 50%,甚至更快。此外,我们还介绍了基于代用模型的混合 RML(SH-RML),这是一种依赖于随机最大似然法(RML)的变异数据同化方法,其中 FNO 和 T-UNet 都能计算梯度以优化目标函数,而高保真模型则用于计算后验状态。我们的比较分析表明,在案例研究中,与传统的 ESMDA 相比,SH-RML 能更好地量化不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI enhanced data assimilation and uncertainty quantification applied to Geological Carbon Storage

This study investigates the integration of machine learning (ML) and data assimilation (DA) techniques, focusing on implementing surrogate models for Geological Carbon Storage (GCS) projects while maintaining the high fidelity physical results in posterior states. Initially, we evaluate the surrogate modeling capability of two distinct machine learning models, Fourier Neural Operators (FNOs) and Transformer UNet (T-UNet), in the context of CO2 injection simulations within channelized reservoirs. We introduce the Surrogate-based hybrid ESMDA (SH-ESMDA), an adaptation of the traditional Ensemble Smoother with Multiple Data Assimilation (ESMDA). This method uses FNOs and T-UNet as surrogate models and has the potential to make the standard ESMDA process at least 50% faster or more, depending on the number of assimilation steps. Additionally, we introduce Surrogate-based Hybrid RML (SH-RML), a variational data assimilation approach that relies on the randomized maximum likelihood (RML) where both the FNO and the T-UNet enable the computation of gradients for the optimization of the objective function, and a high-fidelity model is employed for the computation of the posterior states. Our comparative analyses show that SH-RML offers a better uncertainty quantification when compared to the conventional ESMDA for the case study.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
10.30%
发文量
199
审稿时长
4.8 months
期刊介绍: The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信