验证混合纳米材料的协同效应和超高强度混凝土梁的渐进坍塌行为:颗粒填料理论、实验和有限元分析之间是否存在紧密联系?

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS
S. Indhumathi , S. Umamaheswari , A. Dinesh , Moorthi Pichumani
{"title":"验证混合纳米材料的协同效应和超高强度混凝土梁的渐进坍塌行为:颗粒填料理论、实验和有限元分析之间是否存在紧密联系?","authors":"S. Indhumathi ,&nbsp;S. Umamaheswari ,&nbsp;A. Dinesh ,&nbsp;Moorthi Pichumani","doi":"10.1016/j.susmat.2024.e01044","DOIUrl":null,"url":null,"abstract":"<div><p>Ultra-High-Performance Concrete (UHPC), a unique cementitious composite that exhibits an ideal solution for structural reclamation. The significant objective is to develop UHPC with binary nanomaterials (nanosilica and nano clay) using Modified Andreasen and Andersen particle packing theory and examine effect of nano hybridization in flexural and shear behaviour of reinforced UHPC beams. In addition, findings such as load-deflection behaviour and crack pattern are validated with Finite Element Analysis (ANSYS). The synergistic effect of hybrid nanomaterials enhances formation of hydration products that accounts for 27%, 30.7%, and 49% improvement in compressive, splitting tensile, and flexural strength in 2% nanosilica and nano clay (D2 mix Id). Moreover, flexural UHPC beam (D2 F) and shear UHPC beam (D2 S) withstand 9.5% and 10% higher ultimate load than control (A0 F and A0 S mix). The Finite Element Analysis predicts ultimate load in very minimum discrepancy percentage that ranges from 1 to 3%.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validating synergistic effects of hybrid nanomaterials and progressive collapse behaviour of UHPC beams: Do particle packing theory, experiments and finite element analysis strongly interconnected?\",\"authors\":\"S. Indhumathi ,&nbsp;S. Umamaheswari ,&nbsp;A. Dinesh ,&nbsp;Moorthi Pichumani\",\"doi\":\"10.1016/j.susmat.2024.e01044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultra-High-Performance Concrete (UHPC), a unique cementitious composite that exhibits an ideal solution for structural reclamation. The significant objective is to develop UHPC with binary nanomaterials (nanosilica and nano clay) using Modified Andreasen and Andersen particle packing theory and examine effect of nano hybridization in flexural and shear behaviour of reinforced UHPC beams. In addition, findings such as load-deflection behaviour and crack pattern are validated with Finite Element Analysis (ANSYS). The synergistic effect of hybrid nanomaterials enhances formation of hydration products that accounts for 27%, 30.7%, and 49% improvement in compressive, splitting tensile, and flexural strength in 2% nanosilica and nano clay (D2 mix Id). Moreover, flexural UHPC beam (D2 F) and shear UHPC beam (D2 S) withstand 9.5% and 10% higher ultimate load than control (A0 F and A0 S mix). The Finite Element Analysis predicts ultimate load in very minimum discrepancy percentage that ranges from 1 to 3%.</p></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993724002240\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724002240","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

超高性能混凝土(UHPC)是一种独特的水泥基复合材料,是结构再生的理想解决方案。其重要目标是利用修正的 Andreasen 和 Andersen 粒子堆积理论,开发含有二元纳米材料(纳米二氧化硅和纳米粘土)的超高性能混凝土,并研究纳米杂化对增强型超高性能混凝土梁的抗弯和抗剪性能的影响。此外,还利用有限元分析(ANSYS)验证了载荷-挠度行为和裂纹模式等研究结果。混合纳米材料的协同效应增强了水化产物的形成,使 2% 纳米二氧化硅和纳米粘土(D2 混合物 Id)的抗压、劈裂拉伸和抗弯强度分别提高了 27%、30.7% 和 49%。此外,与对照组(A0 F 和 A0 S 混合物)相比,抗弯 UHPC 梁(D2 F)和抗剪 UHPC 梁(D2 S)的极限荷载分别提高了 9.5%和 10%。有限元分析预测的极限荷载偏差极小,仅为 1% 至 3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Validating synergistic effects of hybrid nanomaterials and progressive collapse behaviour of UHPC beams: Do particle packing theory, experiments and finite element analysis strongly interconnected?

Validating synergistic effects of hybrid nanomaterials and progressive collapse behaviour of UHPC beams: Do particle packing theory, experiments and finite element analysis strongly interconnected?

Ultra-High-Performance Concrete (UHPC), a unique cementitious composite that exhibits an ideal solution for structural reclamation. The significant objective is to develop UHPC with binary nanomaterials (nanosilica and nano clay) using Modified Andreasen and Andersen particle packing theory and examine effect of nano hybridization in flexural and shear behaviour of reinforced UHPC beams. In addition, findings such as load-deflection behaviour and crack pattern are validated with Finite Element Analysis (ANSYS). The synergistic effect of hybrid nanomaterials enhances formation of hydration products that accounts for 27%, 30.7%, and 49% improvement in compressive, splitting tensile, and flexural strength in 2% nanosilica and nano clay (D2 mix Id). Moreover, flexural UHPC beam (D2 F) and shear UHPC beam (D2 S) withstand 9.5% and 10% higher ultimate load than control (A0 F and A0 S mix). The Finite Element Analysis predicts ultimate load in very minimum discrepancy percentage that ranges from 1 to 3%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信