不可压缩多流体力学方程的二阶、完全解耦、线性、精确无发散和无条件稳定的离散方案

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Qianqian Ding , Shipeng Mao , Ruijie Xi
{"title":"不可压缩多流体力学方程的二阶、完全解耦、线性、精确无发散和无条件稳定的离散方案","authors":"Qianqian Ding ,&nbsp;Shipeng Mao ,&nbsp;Ruijie Xi","doi":"10.1016/j.camwa.2024.06.018","DOIUrl":null,"url":null,"abstract":"<div><p>This article designs a fully decoupled finite element algorithm with second order time-accuracy for the incompressible vector potential magnetohydrodynamic (MHD) system. The novel feature lies in the fact that it naturally produces an exactly divergence-free discretized solution of magnetic induction. The designed algorithm exhibits second-order accuracy, unconditional stability, linearity and fully decoupling. It is implemented by introducing the scalar auxiliary variable (SAV) techniques, combining second-order pressure-correction method, explicit treatment for the nonlinear/coupled terms, and a finite element method for spatial discretization. The effectiveness of this developed algorithm is demonstrated through various three-dimensional numerical simulations, including convergence tests and benchmark issues such as the driven cavity flow, the hydromagnetic Kelvin-Helmholtz instability and the island coalescence problem.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"169 ","pages":"Pages 195-204"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Second order, fully decoupled, linear, exactly divergence-free and unconditionally stable discrete scheme for incompressible MHD equations\",\"authors\":\"Qianqian Ding ,&nbsp;Shipeng Mao ,&nbsp;Ruijie Xi\",\"doi\":\"10.1016/j.camwa.2024.06.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article designs a fully decoupled finite element algorithm with second order time-accuracy for the incompressible vector potential magnetohydrodynamic (MHD) system. The novel feature lies in the fact that it naturally produces an exactly divergence-free discretized solution of magnetic induction. The designed algorithm exhibits second-order accuracy, unconditional stability, linearity and fully decoupling. It is implemented by introducing the scalar auxiliary variable (SAV) techniques, combining second-order pressure-correction method, explicit treatment for the nonlinear/coupled terms, and a finite element method for spatial discretization. The effectiveness of this developed algorithm is demonstrated through various three-dimensional numerical simulations, including convergence tests and benchmark issues such as the driven cavity flow, the hydromagnetic Kelvin-Helmholtz instability and the island coalescence problem.</p></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"169 \",\"pages\":\"Pages 195-204\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124002864\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124002864","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文针对不可压缩矢量势磁流体动力学(MHD)系统设计了一种具有二阶时间精度的完全解耦有限元算法。该算法的新颖之处在于,它能自然生成精确无发散的磁感应离散解。所设计的算法具有二阶精度、无条件稳定性、线性和完全解耦。该算法通过引入标量辅助变量(SAV)技术,结合二阶压力校正方法、非线性/耦合项的显式处理以及空间离散化的有限元方法来实现。通过各种三维数值模拟,包括收敛性测试和基准问题(如驱动空腔流、水磁性开尔文-赫姆霍兹不稳定性和岛屿凝聚问题),证明了所开发算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Second order, fully decoupled, linear, exactly divergence-free and unconditionally stable discrete scheme for incompressible MHD equations

This article designs a fully decoupled finite element algorithm with second order time-accuracy for the incompressible vector potential magnetohydrodynamic (MHD) system. The novel feature lies in the fact that it naturally produces an exactly divergence-free discretized solution of magnetic induction. The designed algorithm exhibits second-order accuracy, unconditional stability, linearity and fully decoupling. It is implemented by introducing the scalar auxiliary variable (SAV) techniques, combining second-order pressure-correction method, explicit treatment for the nonlinear/coupled terms, and a finite element method for spatial discretization. The effectiveness of this developed algorithm is demonstrated through various three-dimensional numerical simulations, including convergence tests and benchmark issues such as the driven cavity flow, the hydromagnetic Kelvin-Helmholtz instability and the island coalescence problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信