MRGazer:从个体空间的功能性磁共振成像解码眼球注视点。

Xiuwen Wu, Rongjie Hu, Jie Liang, Yanming Wang, Bensheng Qiu, Xiaoxiao Wang
{"title":"MRGazer:从个体空间的功能性磁共振成像解码眼球注视点。","authors":"Xiuwen Wu, Rongjie Hu, Jie Liang, Yanming Wang, Bensheng Qiu, Xiaoxiao Wang","doi":"10.1088/1741-2552/ad6185","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Eye-tracking research has proven valuable in understanding numerous cognitive functions. Recently, Frey<i>et al</i>provided an exciting deep learning method for learning eye movements from functional magnetic resonance imaging (fMRI) data. It employed the multi-step co-registration of fMRI into the group template to obtain eyeball signal, and thus required additional templates and was time consuming. To resolve this issue, in this paper, we propose a framework named MRGazer for predicting eye gaze points from fMRI in individual space.<i>Approach</i>. The MRGazer consists of an eyeball extraction module and a residual network-based eye gaze prediction module. Compared to the previous method, the proposed framework skips the fMRI co-registration step, simplifies the processing protocol, and achieves end-to-end eye gaze regression.<i>Main results</i>. The proposed method achieved superior performance in eye fixation regression (Euclidean error, EE = 2.04°) than the co-registration-based method (EE = 2.89°), and delivered objective results within a shorter time (∼0.02 s volume<sup>-1</sup>) than prior method (∼0.3 s volume<sup>-1</sup>).<i>Significance</i>. The MRGazer is an efficient, simple, and accurate deep learning framework for predicting eye movement from fMRI data, and can be employed during fMRI scans in psychological and cognitive research. The code is available athttps://github.com/ustc-bmec/MRGazer.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MRGazer: decoding eye gaze points from functional magnetic resonance imaging in individual space.\",\"authors\":\"Xiuwen Wu, Rongjie Hu, Jie Liang, Yanming Wang, Bensheng Qiu, Xiaoxiao Wang\",\"doi\":\"10.1088/1741-2552/ad6185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Eye-tracking research has proven valuable in understanding numerous cognitive functions. Recently, Frey<i>et al</i>provided an exciting deep learning method for learning eye movements from functional magnetic resonance imaging (fMRI) data. It employed the multi-step co-registration of fMRI into the group template to obtain eyeball signal, and thus required additional templates and was time consuming. To resolve this issue, in this paper, we propose a framework named MRGazer for predicting eye gaze points from fMRI in individual space.<i>Approach</i>. The MRGazer consists of an eyeball extraction module and a residual network-based eye gaze prediction module. Compared to the previous method, the proposed framework skips the fMRI co-registration step, simplifies the processing protocol, and achieves end-to-end eye gaze regression.<i>Main results</i>. The proposed method achieved superior performance in eye fixation regression (Euclidean error, EE = 2.04°) than the co-registration-based method (EE = 2.89°), and delivered objective results within a shorter time (∼0.02 s volume<sup>-1</sup>) than prior method (∼0.3 s volume<sup>-1</sup>).<i>Significance</i>. The MRGazer is an efficient, simple, and accurate deep learning framework for predicting eye movement from fMRI data, and can be employed during fMRI scans in psychological and cognitive research. The code is available athttps://github.com/ustc-bmec/MRGazer.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/ad6185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad6185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

眼动跟踪研究已被证明对了解许多认知功能很有价值。最近,Frey 等人提供了一种令人兴奋的深度学习方法,用于从功能性磁共振成像(fMRI)数据中学习眼球运动。该方法采用将 fMRI 多步共注册到组模板中的方法来获取眼球信号,因此需要额外的模板,而且耗时较长。为了解决这个问题,我们在本文中提出了一个名为 MRGazer 的框架,用于从个体空间的 fMRI 预测眼球注视点。MRGazer 由眼球提取模块和基于残差网络的眼球注视预测模块组成。与之前的方法相比,所提出的框架跳过了 fMRI 协同注册步骤,简化了处理协议,实现了端到端的眼注视回归。与基于共登记的方法(EE=2.89°)相比,提出的方法在眼球固定回归(欧氏误差,EE=2.04°)方面取得了更优越的性能,并且与之前的方法(约0.3秒/卷)相比,能在更短的时间内(约0.02秒/卷)提供客观的结果。代码见 https://github.com/ustc-bmec/MRGazer。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MRGazer: decoding eye gaze points from functional magnetic resonance imaging in individual space.

Objective. Eye-tracking research has proven valuable in understanding numerous cognitive functions. Recently, Freyet alprovided an exciting deep learning method for learning eye movements from functional magnetic resonance imaging (fMRI) data. It employed the multi-step co-registration of fMRI into the group template to obtain eyeball signal, and thus required additional templates and was time consuming. To resolve this issue, in this paper, we propose a framework named MRGazer for predicting eye gaze points from fMRI in individual space.Approach. The MRGazer consists of an eyeball extraction module and a residual network-based eye gaze prediction module. Compared to the previous method, the proposed framework skips the fMRI co-registration step, simplifies the processing protocol, and achieves end-to-end eye gaze regression.Main results. The proposed method achieved superior performance in eye fixation regression (Euclidean error, EE = 2.04°) than the co-registration-based method (EE = 2.89°), and delivered objective results within a shorter time (∼0.02 s volume-1) than prior method (∼0.3 s volume-1).Significance. The MRGazer is an efficient, simple, and accurate deep learning framework for predicting eye movement from fMRI data, and can be employed during fMRI scans in psychological and cognitive research. The code is available athttps://github.com/ustc-bmec/MRGazer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信