{"title":"利用图神经网络高效、可扩展地预测随机反应-扩散过程。","authors":"","doi":"10.1016/j.mbs.2024.109248","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamics of locally interacting particles that are distributed in space give rise to a multitude of complex behaviours. However the simulation of reaction–diffusion processes which model such systems is highly computationally expensive, the cost increasing rapidly with the size of space. Here, we devise a graph neural network based approach that uses cheap Monte Carlo simulations of reaction–diffusion processes in a small space to cast predictions of the dynamics of the same processes in a much larger and complex space, including spaces modelled by networks with heterogeneous topology. By applying the method to two biological examples, we show that it leads to accurate results in a small fraction of the computation time of standard stochastic simulation methods. The scalability and accuracy of the method suggest it is a promising approach for studying reaction–diffusion processes in complex spatial domains such as those modelling biochemical reactions, population evolution and epidemic spreading.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"375 ","pages":"Article 109248"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424001081/pdfft?md5=945b85127a938ae609979d1a052b313a&pid=1-s2.0-S0025556424001081-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Efficient and scalable prediction of stochastic reaction–diffusion processes using graph neural networks\",\"authors\":\"\",\"doi\":\"10.1016/j.mbs.2024.109248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dynamics of locally interacting particles that are distributed in space give rise to a multitude of complex behaviours. However the simulation of reaction–diffusion processes which model such systems is highly computationally expensive, the cost increasing rapidly with the size of space. Here, we devise a graph neural network based approach that uses cheap Monte Carlo simulations of reaction–diffusion processes in a small space to cast predictions of the dynamics of the same processes in a much larger and complex space, including spaces modelled by networks with heterogeneous topology. By applying the method to two biological examples, we show that it leads to accurate results in a small fraction of the computation time of standard stochastic simulation methods. The scalability and accuracy of the method suggest it is a promising approach for studying reaction–diffusion processes in complex spatial domains such as those modelling biochemical reactions, population evolution and epidemic spreading.</p></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"375 \",\"pages\":\"Article 109248\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001081/pdfft?md5=945b85127a938ae609979d1a052b313a&pid=1-s2.0-S0025556424001081-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424001081\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001081","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Efficient and scalable prediction of stochastic reaction–diffusion processes using graph neural networks
The dynamics of locally interacting particles that are distributed in space give rise to a multitude of complex behaviours. However the simulation of reaction–diffusion processes which model such systems is highly computationally expensive, the cost increasing rapidly with the size of space. Here, we devise a graph neural network based approach that uses cheap Monte Carlo simulations of reaction–diffusion processes in a small space to cast predictions of the dynamics of the same processes in a much larger and complex space, including spaces modelled by networks with heterogeneous topology. By applying the method to two biological examples, we show that it leads to accurate results in a small fraction of the computation time of standard stochastic simulation methods. The scalability and accuracy of the method suggest it is a promising approach for studying reaction–diffusion processes in complex spatial domains such as those modelling biochemical reactions, population evolution and epidemic spreading.
期刊介绍:
Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.