Camille Frévent, Mohamed-Salem Ahmed, Sophie Dabo-Niang, Michaël Genin
{"title":"时间-事件数据的共享-弱点空间扫描统计模型。","authors":"Camille Frévent, Mohamed-Salem Ahmed, Sophie Dabo-Niang, Michaël Genin","doi":"10.1002/bimj.202300200","DOIUrl":null,"url":null,"abstract":"<p>Spatial scan statistics are well-known methods widely used to detect spatial clusters of events. Furthermore, several spatial scan statistics models have been applied to the spatial analysis of time-to-event data. However, these models do not take account of potential correlations between the observations of individuals within the same spatial unit or potential spatial dependence between spatial units. To overcome this problem, we have developed a scan statistic based on a Cox model with shared frailty and that takes account of the spatial dependence between spatial units. In simulation studies, we found that (i) conventional models of spatial scan statistics for time-to-event data fail to maintain the type I error in the presence of a correlation between the observations of individuals within the same spatial unit and (ii) our model performed well in the presence of such correlation and spatial dependence. We have applied our method to epidemiological data and the detection of spatial clusters of mortality in patients with end-stage renal disease in northern France.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300200","citationCount":"0","resultStr":"{\"title\":\"A Shared-Frailty Spatial Scan Statistic Model for Time-to-Event Data\",\"authors\":\"Camille Frévent, Mohamed-Salem Ahmed, Sophie Dabo-Niang, Michaël Genin\",\"doi\":\"10.1002/bimj.202300200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spatial scan statistics are well-known methods widely used to detect spatial clusters of events. Furthermore, several spatial scan statistics models have been applied to the spatial analysis of time-to-event data. However, these models do not take account of potential correlations between the observations of individuals within the same spatial unit or potential spatial dependence between spatial units. To overcome this problem, we have developed a scan statistic based on a Cox model with shared frailty and that takes account of the spatial dependence between spatial units. In simulation studies, we found that (i) conventional models of spatial scan statistics for time-to-event data fail to maintain the type I error in the presence of a correlation between the observations of individuals within the same spatial unit and (ii) our model performed well in the presence of such correlation and spatial dependence. We have applied our method to epidemiological data and the detection of spatial clusters of mortality in patients with end-stage renal disease in northern France.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300200\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300200\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300200","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
空间扫描统计是众所周知的方法,被广泛用于检测事件的空间集群。此外,一些空间扫描统计模型已被应用于时间到事件数据的空间分析。然而,这些模型并没有考虑到同一空间单位内个体观测数据之间的潜在相关性,也没有考虑到空间单位之间的潜在空间依赖性。为了解决这个问题,我们开发了一种基于具有共同脆弱性的 Cox 模型的扫描统计量,它考虑到了空间单位之间的空间依赖性。在模拟研究中,我们发现:(i) 用于时间到事件数据的传统空间扫描统计模型,在同一空间单元内的个体观测值之间存在相关性的情况下,无法保持 I 型误差;(ii) 我们的模型在存在这种相关性和空间依赖性的情况下表现良好。我们已将我们的方法应用于流行病学数据和法国北部终末期肾病患者死亡率空间集群的检测。
A Shared-Frailty Spatial Scan Statistic Model for Time-to-Event Data
Spatial scan statistics are well-known methods widely used to detect spatial clusters of events. Furthermore, several spatial scan statistics models have been applied to the spatial analysis of time-to-event data. However, these models do not take account of potential correlations between the observations of individuals within the same spatial unit or potential spatial dependence between spatial units. To overcome this problem, we have developed a scan statistic based on a Cox model with shared frailty and that takes account of the spatial dependence between spatial units. In simulation studies, we found that (i) conventional models of spatial scan statistics for time-to-event data fail to maintain the type I error in the presence of a correlation between the observations of individuals within the same spatial unit and (ii) our model performed well in the presence of such correlation and spatial dependence. We have applied our method to epidemiological data and the detection of spatial clusters of mortality in patients with end-stage renal disease in northern France.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.