{"title":"Physalis alkekengi 细胞悬浮培养的建立:在静态磁场下与甾体化合物、关键酶和物理肽有关的基因的时间依赖性行为。","authors":"Halimeh Hassanpour","doi":"10.1007/s00709-024-01966-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cell suspension culture has the potential to be a valuable source for the bioactive compound productions. In this study, an optimized procedure was established for callus and cell suspension culture of Physalis alkekengi for the first time, and the impact of static magnetic field (SMF, 6 mT) was studied on the high-value metabolic compounds through investigation of signaling molecules and gene expressions at the late log-to-stationary phase. Results showed that the growth regulators of 6-benzyl amino purine (BAP, 1.5 mg<sup>-1</sup> L) and 1-naphthaleneacetic acid (NAA, 0.4 mg<sup>-1</sup> L) induced the highest fresh weight, callus rate, callus index, and total withanolides. Cell suspension culture was established in the liquid MS medium supplied with BAP (1.5 mg<sup>-1</sup> L) and NAA (0.1 mg<sup>-1</sup> L). SMF application decreased slightly the cell growth and viability and enhanced the number of round-shaped cells. The hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and nitric oxide (NO) levels increased at an all-time series after SMF exposure, and their maximum contents were observed after 12 h. A significant alteration of malondialdehyde content was also identified after 12 h of SMF exposure. The expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), 1-deoxyD-xylulose 5-phosphate synthase (DXS), squalene synthase (SQS), sterol Δ7-reductase (DWF5), and C-7,8 sterol isomerase (HYD1) genes was upregulated significantly after 24 and 48 h. An increase in the total withanolides was related to more activity of HMGR and DXS enzymes in SMF-exposed cells and the maximum physalin A (12.8 mg g<sup>-1</sup> DW) and physalin B (1.92 mg g<sup>-1</sup> DW) obtained after 24 h compared to controls. Findings suggest that SMF can play a supportive factor in inducing steroidal compounds in P. alkekengi through modulating H<sub>2</sub>O<sub>2</sub> and NO levels and the related-gene expressions.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of Physalis alkekengi cell suspension culture: time-dependent behavior of genes related to the steroidal compounds, key enzymes, and physalins under static magnetic field.\",\"authors\":\"Halimeh Hassanpour\",\"doi\":\"10.1007/s00709-024-01966-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell suspension culture has the potential to be a valuable source for the bioactive compound productions. In this study, an optimized procedure was established for callus and cell suspension culture of Physalis alkekengi for the first time, and the impact of static magnetic field (SMF, 6 mT) was studied on the high-value metabolic compounds through investigation of signaling molecules and gene expressions at the late log-to-stationary phase. Results showed that the growth regulators of 6-benzyl amino purine (BAP, 1.5 mg<sup>-1</sup> L) and 1-naphthaleneacetic acid (NAA, 0.4 mg<sup>-1</sup> L) induced the highest fresh weight, callus rate, callus index, and total withanolides. Cell suspension culture was established in the liquid MS medium supplied with BAP (1.5 mg<sup>-1</sup> L) and NAA (0.1 mg<sup>-1</sup> L). SMF application decreased slightly the cell growth and viability and enhanced the number of round-shaped cells. The hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and nitric oxide (NO) levels increased at an all-time series after SMF exposure, and their maximum contents were observed after 12 h. A significant alteration of malondialdehyde content was also identified after 12 h of SMF exposure. The expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), 1-deoxyD-xylulose 5-phosphate synthase (DXS), squalene synthase (SQS), sterol Δ7-reductase (DWF5), and C-7,8 sterol isomerase (HYD1) genes was upregulated significantly after 24 and 48 h. An increase in the total withanolides was related to more activity of HMGR and DXS enzymes in SMF-exposed cells and the maximum physalin A (12.8 mg g<sup>-1</sup> DW) and physalin B (1.92 mg g<sup>-1</sup> DW) obtained after 24 h compared to controls. Findings suggest that SMF can play a supportive factor in inducing steroidal compounds in P. alkekengi through modulating H<sub>2</sub>O<sub>2</sub> and NO levels and the related-gene expressions.</p>\",\"PeriodicalId\":20731,\"journal\":{\"name\":\"Protoplasma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protoplasma\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00709-024-01966-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-024-01966-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Establishment of Physalis alkekengi cell suspension culture: time-dependent behavior of genes related to the steroidal compounds, key enzymes, and physalins under static magnetic field.
Cell suspension culture has the potential to be a valuable source for the bioactive compound productions. In this study, an optimized procedure was established for callus and cell suspension culture of Physalis alkekengi for the first time, and the impact of static magnetic field (SMF, 6 mT) was studied on the high-value metabolic compounds through investigation of signaling molecules and gene expressions at the late log-to-stationary phase. Results showed that the growth regulators of 6-benzyl amino purine (BAP, 1.5 mg-1 L) and 1-naphthaleneacetic acid (NAA, 0.4 mg-1 L) induced the highest fresh weight, callus rate, callus index, and total withanolides. Cell suspension culture was established in the liquid MS medium supplied with BAP (1.5 mg-1 L) and NAA (0.1 mg-1 L). SMF application decreased slightly the cell growth and viability and enhanced the number of round-shaped cells. The hydrogen peroxide (H2O2) and nitric oxide (NO) levels increased at an all-time series after SMF exposure, and their maximum contents were observed after 12 h. A significant alteration of malondialdehyde content was also identified after 12 h of SMF exposure. The expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), 1-deoxyD-xylulose 5-phosphate synthase (DXS), squalene synthase (SQS), sterol Δ7-reductase (DWF5), and C-7,8 sterol isomerase (HYD1) genes was upregulated significantly after 24 and 48 h. An increase in the total withanolides was related to more activity of HMGR and DXS enzymes in SMF-exposed cells and the maximum physalin A (12.8 mg g-1 DW) and physalin B (1.92 mg g-1 DW) obtained after 24 h compared to controls. Findings suggest that SMF can play a supportive factor in inducing steroidal compounds in P. alkekengi through modulating H2O2 and NO levels and the related-gene expressions.
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".