{"title":"温度振荡对谐波系统中储能整流的影响。","authors":"Renai Chen, Galen T Craven","doi":"10.1088/1361-648X/ad5d40","DOIUrl":null,"url":null,"abstract":"<p><p>Rectification, the preferential transport of a current in one direction through a system, has garnered significant attention in molecules because of its importance for controlling thermal and electronic currents at the nanoscale. Here, we report the presence of energy storage rectification effects in a molecular chain. This phenomenon is generated by subjecting a harmonic molecular chain to an oscillating temperature gradient and showing that the energy absorption rate of the system depends on the direction of the gradient. We examine how the energy storage rectification ratios in the chain are affected by the oscillating gradient, asymmetry in the chain, and the system parameters. We find that energy storage rectification can be observed in harmonic lattice structures with time-dependent temperatures and that, correspondingly, anharmonicity is not required to generate this rectification mechanism in such systems.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of temperature oscillations on energy storage rectification in harmonic systems.\",\"authors\":\"Renai Chen, Galen T Craven\",\"doi\":\"10.1088/1361-648X/ad5d40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rectification, the preferential transport of a current in one direction through a system, has garnered significant attention in molecules because of its importance for controlling thermal and electronic currents at the nanoscale. Here, we report the presence of energy storage rectification effects in a molecular chain. This phenomenon is generated by subjecting a harmonic molecular chain to an oscillating temperature gradient and showing that the energy absorption rate of the system depends on the direction of the gradient. We examine how the energy storage rectification ratios in the chain are affected by the oscillating gradient, asymmetry in the chain, and the system parameters. We find that energy storage rectification can be observed in harmonic lattice structures with time-dependent temperatures and that, correspondingly, anharmonicity is not required to generate this rectification mechanism in such systems.</p>\",\"PeriodicalId\":16776,\"journal\":{\"name\":\"Journal of Physics: Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics: Condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-648X/ad5d40\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad5d40","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
The effect of temperature oscillations on energy storage rectification in harmonic systems.
Rectification, the preferential transport of a current in one direction through a system, has garnered significant attention in molecules because of its importance for controlling thermal and electronic currents at the nanoscale. Here, we report the presence of energy storage rectification effects in a molecular chain. This phenomenon is generated by subjecting a harmonic molecular chain to an oscillating temperature gradient and showing that the energy absorption rate of the system depends on the direction of the gradient. We examine how the energy storage rectification ratios in the chain are affected by the oscillating gradient, asymmetry in the chain, and the system parameters. We find that energy storage rectification can be observed in harmonic lattice structures with time-dependent temperatures and that, correspondingly, anharmonicity is not required to generate this rectification mechanism in such systems.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.