Samuel C Zhang, Andriana P Nikolova, Mitchell Kamrava, Raymond H Mak, Katelyn M Atkins
{"title":"辐射诱发心脏病建模路线图。","authors":"Samuel C Zhang, Andriana P Nikolova, Mitchell Kamrava, Raymond H Mak, Katelyn M Atkins","doi":"10.1111/1754-9485.13716","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac risk mitigation is a major priority in improving outcomes for cancer survivors as advances in cancer screening and treatments continue to decrease cancer mortality. More than half of adult cancer patients will be treated with radiotherapy (RT); therefore it is crucial to develop a framework for how to assess and predict radiation-induced cardiac disease (RICD). Historically, RICD was modelled solely using whole heart metrics such as mean heart dose. However, data over the past decade has identified cardiac substructures which outperform whole heart metrics in predicting for significant cardiac events. Additionally, non-RT factors such as pre-existing cardiovascular risk factors and toxicity from other therapies contribute to risk of future cardiac events. In this review, we aim to discuss the current evidence and knowledge gaps in predicting RICD and provide a roadmap for the development of comprehensive models based on three interrelated components, (1) baseline CV risk assessment, (2) cardiac substructure radiation dosimetry linked with cardiac-specific outcomes and (3) novel biomarker development.</p>","PeriodicalId":16218,"journal":{"name":"Journal of Medical Imaging and Radiation Oncology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A roadmap for modelling radiation-induced cardiac disease.\",\"authors\":\"Samuel C Zhang, Andriana P Nikolova, Mitchell Kamrava, Raymond H Mak, Katelyn M Atkins\",\"doi\":\"10.1111/1754-9485.13716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiac risk mitigation is a major priority in improving outcomes for cancer survivors as advances in cancer screening and treatments continue to decrease cancer mortality. More than half of adult cancer patients will be treated with radiotherapy (RT); therefore it is crucial to develop a framework for how to assess and predict radiation-induced cardiac disease (RICD). Historically, RICD was modelled solely using whole heart metrics such as mean heart dose. However, data over the past decade has identified cardiac substructures which outperform whole heart metrics in predicting for significant cardiac events. Additionally, non-RT factors such as pre-existing cardiovascular risk factors and toxicity from other therapies contribute to risk of future cardiac events. In this review, we aim to discuss the current evidence and knowledge gaps in predicting RICD and provide a roadmap for the development of comprehensive models based on three interrelated components, (1) baseline CV risk assessment, (2) cardiac substructure radiation dosimetry linked with cardiac-specific outcomes and (3) novel biomarker development.</p>\",\"PeriodicalId\":16218,\"journal\":{\"name\":\"Journal of Medical Imaging and Radiation Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging and Radiation Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/1754-9485.13716\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging and Radiation Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1754-9485.13716","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
A roadmap for modelling radiation-induced cardiac disease.
Cardiac risk mitigation is a major priority in improving outcomes for cancer survivors as advances in cancer screening and treatments continue to decrease cancer mortality. More than half of adult cancer patients will be treated with radiotherapy (RT); therefore it is crucial to develop a framework for how to assess and predict radiation-induced cardiac disease (RICD). Historically, RICD was modelled solely using whole heart metrics such as mean heart dose. However, data over the past decade has identified cardiac substructures which outperform whole heart metrics in predicting for significant cardiac events. Additionally, non-RT factors such as pre-existing cardiovascular risk factors and toxicity from other therapies contribute to risk of future cardiac events. In this review, we aim to discuss the current evidence and knowledge gaps in predicting RICD and provide a roadmap for the development of comprehensive models based on three interrelated components, (1) baseline CV risk assessment, (2) cardiac substructure radiation dosimetry linked with cardiac-specific outcomes and (3) novel biomarker development.
期刊介绍:
Journal of Medical Imaging and Radiation Oncology (formerly Australasian Radiology) is the official journal of The Royal Australian and New Zealand College of Radiologists, publishing articles of scientific excellence in radiology and radiation oncology. Manuscripts are judged on the basis of their contribution of original data and ideas or interpretation. All articles are peer reviewed.