Boqun Cui, Fei Gao, Duomao Lin, Yang Yu, Chengbin Wang, Jun Ma
{"title":"褪黑素通过 Caspase-11/GSDMD 通路对 LPS 诱导的心肌损伤的保护作用","authors":"Boqun Cui, Fei Gao, Duomao Lin, Yang Yu, Chengbin Wang, Jun Ma","doi":"10.2174/0113862073284989240510062817","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Melatonin (MT) has been demonstrated to have cardioprotective effects. Nevertheless, the precise mechanism through which MT provides protection against the etiology of LPS-induced myocardial injury remains uncertain. In this investigation, our objective was to explore the impact of MT on LPS-induced myocardial injury in an in vitro setting.</p><p><strong>Methods: </strong>H9C2 cells were categorized into four groups: a control group (H9C2 group), an MT group, an LPS group, and an MT + LPS group. The H9C2 group received treatment with sterile saline solution, the LPS group was exposed to 5 μg/mL LPS for 24 hours, the MT + LPS group underwent pretreatment with 150 μmol/L MT for 2 hours, followed by exposure to 5 μg/mL LPS for 24 hours, and the MT group received only 150 μmol/L MT for 2 hours. Cell viability and lactate dehydrogenase (LDH) release were assessed using the CCK-8 assay and LDH activity assay, respectively. The levels of reactive oxygen species (ROS) were quantified in each group of cells, and the percentage of propidium iodide (PI)-stained apoptotic cells was determined by flow cytometry. The mRNA levels of caspase11, GSDMD, and IL-18 in each group of cells were quantified.</p><p><strong>Results: </strong>MT treatment significantly protected H9C2 cells from LPS-induced damage, as evidenced by decreased LDH release. LPS treatment markedly increased ROS levels in H9C2 cells, which were subsequently reduced by MT. LPS caused a substantial decrease in superoxide dismutase (SOD) activity and a significant increase in malondialdehyde (MDA) levels, while MT treatment significantly reversed these effects. Additionally, MT markedly enhanced the proportion of viable H9C2 cells compared to LPS-treated controls, as evidenced by the PI staining assay. LPS upregulated both mRNA levels and protein levels of IL-18 in H9C2 cells. However, MT treatment effectively mitigated this LPS-induced increase. Furthermore, MT significantly decreased LPS-induced protein levels of cleaved-caspase 11 and GSDMD-N in H9C2 cells.</p><p><strong>Conclusion: </strong>Overall, our findings suggest that MT inhibits the Caspase11-GSDMD signaling pathway via pyroptosis-related proteins (caspase-11 and GSDMD-N) and reduces the expression of inflammation-related cytokines (IL-18), thereby exerting a protective effect on H9C2 cells after LPS injury.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Protective Effect of Melatonin on LPS-Induced Myocardial Injury via the Caspase-11/GSDMD Pathway.\",\"authors\":\"Boqun Cui, Fei Gao, Duomao Lin, Yang Yu, Chengbin Wang, Jun Ma\",\"doi\":\"10.2174/0113862073284989240510062817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Melatonin (MT) has been demonstrated to have cardioprotective effects. Nevertheless, the precise mechanism through which MT provides protection against the etiology of LPS-induced myocardial injury remains uncertain. In this investigation, our objective was to explore the impact of MT on LPS-induced myocardial injury in an in vitro setting.</p><p><strong>Methods: </strong>H9C2 cells were categorized into four groups: a control group (H9C2 group), an MT group, an LPS group, and an MT + LPS group. The H9C2 group received treatment with sterile saline solution, the LPS group was exposed to 5 μg/mL LPS for 24 hours, the MT + LPS group underwent pretreatment with 150 μmol/L MT for 2 hours, followed by exposure to 5 μg/mL LPS for 24 hours, and the MT group received only 150 μmol/L MT for 2 hours. Cell viability and lactate dehydrogenase (LDH) release were assessed using the CCK-8 assay and LDH activity assay, respectively. The levels of reactive oxygen species (ROS) were quantified in each group of cells, and the percentage of propidium iodide (PI)-stained apoptotic cells was determined by flow cytometry. The mRNA levels of caspase11, GSDMD, and IL-18 in each group of cells were quantified.</p><p><strong>Results: </strong>MT treatment significantly protected H9C2 cells from LPS-induced damage, as evidenced by decreased LDH release. LPS treatment markedly increased ROS levels in H9C2 cells, which were subsequently reduced by MT. LPS caused a substantial decrease in superoxide dismutase (SOD) activity and a significant increase in malondialdehyde (MDA) levels, while MT treatment significantly reversed these effects. Additionally, MT markedly enhanced the proportion of viable H9C2 cells compared to LPS-treated controls, as evidenced by the PI staining assay. LPS upregulated both mRNA levels and protein levels of IL-18 in H9C2 cells. However, MT treatment effectively mitigated this LPS-induced increase. Furthermore, MT significantly decreased LPS-induced protein levels of cleaved-caspase 11 and GSDMD-N in H9C2 cells.</p><p><strong>Conclusion: </strong>Overall, our findings suggest that MT inhibits the Caspase11-GSDMD signaling pathway via pyroptosis-related proteins (caspase-11 and GSDMD-N) and reduces the expression of inflammation-related cytokines (IL-18), thereby exerting a protective effect on H9C2 cells after LPS injury.</p>\",\"PeriodicalId\":10491,\"journal\":{\"name\":\"Combinatorial chemistry & high throughput screening\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorial chemistry & high throughput screening\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113862073284989240510062817\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073284989240510062817","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
The Protective Effect of Melatonin on LPS-Induced Myocardial Injury via the Caspase-11/GSDMD Pathway.
Background: Melatonin (MT) has been demonstrated to have cardioprotective effects. Nevertheless, the precise mechanism through which MT provides protection against the etiology of LPS-induced myocardial injury remains uncertain. In this investigation, our objective was to explore the impact of MT on LPS-induced myocardial injury in an in vitro setting.
Methods: H9C2 cells were categorized into four groups: a control group (H9C2 group), an MT group, an LPS group, and an MT + LPS group. The H9C2 group received treatment with sterile saline solution, the LPS group was exposed to 5 μg/mL LPS for 24 hours, the MT + LPS group underwent pretreatment with 150 μmol/L MT for 2 hours, followed by exposure to 5 μg/mL LPS for 24 hours, and the MT group received only 150 μmol/L MT for 2 hours. Cell viability and lactate dehydrogenase (LDH) release were assessed using the CCK-8 assay and LDH activity assay, respectively. The levels of reactive oxygen species (ROS) were quantified in each group of cells, and the percentage of propidium iodide (PI)-stained apoptotic cells was determined by flow cytometry. The mRNA levels of caspase11, GSDMD, and IL-18 in each group of cells were quantified.
Results: MT treatment significantly protected H9C2 cells from LPS-induced damage, as evidenced by decreased LDH release. LPS treatment markedly increased ROS levels in H9C2 cells, which were subsequently reduced by MT. LPS caused a substantial decrease in superoxide dismutase (SOD) activity and a significant increase in malondialdehyde (MDA) levels, while MT treatment significantly reversed these effects. Additionally, MT markedly enhanced the proportion of viable H9C2 cells compared to LPS-treated controls, as evidenced by the PI staining assay. LPS upregulated both mRNA levels and protein levels of IL-18 in H9C2 cells. However, MT treatment effectively mitigated this LPS-induced increase. Furthermore, MT significantly decreased LPS-induced protein levels of cleaved-caspase 11 and GSDMD-N in H9C2 cells.
Conclusion: Overall, our findings suggest that MT inhibits the Caspase11-GSDMD signaling pathway via pyroptosis-related proteins (caspase-11 and GSDMD-N) and reduces the expression of inflammation-related cytokines (IL-18), thereby exerting a protective effect on H9C2 cells after LPS injury.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.