Tan Kaiyun, Xu Xiaotong, Lu Min, Wu Yongrong, Tan Xuyi, Shen Fu, Ge Jinwen, Kuang Gaoyan
{"title":"加味独活寄生混剂通过抑制炎症缓解家兔骨关节炎的进展:网络药理学和实验方法。","authors":"Tan Kaiyun, Xu Xiaotong, Lu Min, Wu Yongrong, Tan Xuyi, Shen Fu, Ge Jinwen, Kuang Gaoyan","doi":"10.2174/0113862073298262240705045345","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Knee osteoarthritis (KOA) is a common degenerative joint disease characterized by cartilage degradation, inflammation, and pain. Traditional Chinese Medicine, including JDJM (a herbal formula derived from the renowned Du Huo Ji Sheng Tang), has been used to alleviate symptoms of KOA, but its underlying mechanisms remain unclear.</p><p><strong>Objective: </strong>This study aims to elucidate the potential therapeutic mechanisms of JDJM in treating KOA through network pharmacology, weighted gene co-expression network analysis (WGCNA), molecular docking, and experimental validation in animal models.</p><p><strong>Methods: </strong>The active compounds of JDJM were identified through TCMSP database searches, and their potential targets were predicted using network pharmacology. WGCNA was employed to identify key modules and hub genes associated with KOA. Molecular docking was performed to assess the binding affinities of key compounds to critical inflammatory targets. Molecular dynamics (MD) simulations were used to evaluate the stability of the protein-ligand complexes. An experimental KOA model in rabbits was used to validate the therapeutic effects of JDJM. Histopathological examinations and inflammatory marker analyses were conducted to confirm the findings.</p><p><strong>Results: </strong>Network pharmacology and WGCNA analyses identified 21 key targets and pathways potentially involved in the therapeutic effects of JDJM. Molecular docking results showed that Glyasperin C had the highest docking scores with EGF and IL-1β, followed by Stigmasterol with IL-6, Myricanone with INS, and Sesamin with VEGFA. MD simulations confirmed the stability of these protein-ligand complexes, indicating strong and stable interactions. In the rabbit KOA model, JDJM treatment significantly improved knee joint morphology and reduced the levels of inflammatory markers, such as IL-6 and TNF-α. Histopathological analysis revealed reduced cartilage degradation and inflammation in the JDJM-treated group compared to controls.</p><p><strong>Conclusion: </strong>JDJM exhibits promising anti-inflammatory and cartilage-protective effects, making it a potential therapeutic option for KOA patients. Further experimental and clinical studies are warranted to confirm these findings and translate them into clinical practice.</p>.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jiawei Duhuo Jisheng Mixture Mitigates Osteoarthritis Progression in Rabbits by Inhibiting Inflammation: A Network Pharmacology and Experimental Approach.\",\"authors\":\"Tan Kaiyun, Xu Xiaotong, Lu Min, Wu Yongrong, Tan Xuyi, Shen Fu, Ge Jinwen, Kuang Gaoyan\",\"doi\":\"10.2174/0113862073298262240705045345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Knee osteoarthritis (KOA) is a common degenerative joint disease characterized by cartilage degradation, inflammation, and pain. Traditional Chinese Medicine, including JDJM (a herbal formula derived from the renowned Du Huo Ji Sheng Tang), has been used to alleviate symptoms of KOA, but its underlying mechanisms remain unclear.</p><p><strong>Objective: </strong>This study aims to elucidate the potential therapeutic mechanisms of JDJM in treating KOA through network pharmacology, weighted gene co-expression network analysis (WGCNA), molecular docking, and experimental validation in animal models.</p><p><strong>Methods: </strong>The active compounds of JDJM were identified through TCMSP database searches, and their potential targets were predicted using network pharmacology. WGCNA was employed to identify key modules and hub genes associated with KOA. Molecular docking was performed to assess the binding affinities of key compounds to critical inflammatory targets. Molecular dynamics (MD) simulations were used to evaluate the stability of the protein-ligand complexes. An experimental KOA model in rabbits was used to validate the therapeutic effects of JDJM. Histopathological examinations and inflammatory marker analyses were conducted to confirm the findings.</p><p><strong>Results: </strong>Network pharmacology and WGCNA analyses identified 21 key targets and pathways potentially involved in the therapeutic effects of JDJM. Molecular docking results showed that Glyasperin C had the highest docking scores with EGF and IL-1β, followed by Stigmasterol with IL-6, Myricanone with INS, and Sesamin with VEGFA. MD simulations confirmed the stability of these protein-ligand complexes, indicating strong and stable interactions. In the rabbit KOA model, JDJM treatment significantly improved knee joint morphology and reduced the levels of inflammatory markers, such as IL-6 and TNF-α. Histopathological analysis revealed reduced cartilage degradation and inflammation in the JDJM-treated group compared to controls.</p><p><strong>Conclusion: </strong>JDJM exhibits promising anti-inflammatory and cartilage-protective effects, making it a potential therapeutic option for KOA patients. Further experimental and clinical studies are warranted to confirm these findings and translate them into clinical practice.</p>.</p>\",\"PeriodicalId\":10491,\"journal\":{\"name\":\"Combinatorial chemistry & high throughput screening\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorial chemistry & high throughput screening\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113862073298262240705045345\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073298262240705045345","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Jiawei Duhuo Jisheng Mixture Mitigates Osteoarthritis Progression in Rabbits by Inhibiting Inflammation: A Network Pharmacology and Experimental Approach.
Background: Knee osteoarthritis (KOA) is a common degenerative joint disease characterized by cartilage degradation, inflammation, and pain. Traditional Chinese Medicine, including JDJM (a herbal formula derived from the renowned Du Huo Ji Sheng Tang), has been used to alleviate symptoms of KOA, but its underlying mechanisms remain unclear.
Objective: This study aims to elucidate the potential therapeutic mechanisms of JDJM in treating KOA through network pharmacology, weighted gene co-expression network analysis (WGCNA), molecular docking, and experimental validation in animal models.
Methods: The active compounds of JDJM were identified through TCMSP database searches, and their potential targets were predicted using network pharmacology. WGCNA was employed to identify key modules and hub genes associated with KOA. Molecular docking was performed to assess the binding affinities of key compounds to critical inflammatory targets. Molecular dynamics (MD) simulations were used to evaluate the stability of the protein-ligand complexes. An experimental KOA model in rabbits was used to validate the therapeutic effects of JDJM. Histopathological examinations and inflammatory marker analyses were conducted to confirm the findings.
Results: Network pharmacology and WGCNA analyses identified 21 key targets and pathways potentially involved in the therapeutic effects of JDJM. Molecular docking results showed that Glyasperin C had the highest docking scores with EGF and IL-1β, followed by Stigmasterol with IL-6, Myricanone with INS, and Sesamin with VEGFA. MD simulations confirmed the stability of these protein-ligand complexes, indicating strong and stable interactions. In the rabbit KOA model, JDJM treatment significantly improved knee joint morphology and reduced the levels of inflammatory markers, such as IL-6 and TNF-α. Histopathological analysis revealed reduced cartilage degradation and inflammation in the JDJM-treated group compared to controls.
Conclusion: JDJM exhibits promising anti-inflammatory and cartilage-protective effects, making it a potential therapeutic option for KOA patients. Further experimental and clinical studies are warranted to confirm these findings and translate them into clinical practice.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.