{"title":"非酯化脂肪酸在癌症生物学中的作用:关注色氨酸及相关代谢。","authors":"","doi":"10.1016/j.bbalip.2024.159531","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma nonesterified fatty acids (NEFA) are elevated in cancer, because of decreased albumin levels and of fatty acid oxidation, and increased fatty acid synthesis and lipolysis. Albumin depletion and NEFA elevation maximally release albumin-bound tryptophan (Trp) and increase its flux down the kynurenine pathway, leading to increased production of proinflammatory kynurenine metabolites, which tumors use to undermine T-cell function and achieve immune escape. Activation of the aryl hydrocarbon receptor by kynurenic acid promotes extrahepatic Trp degradation by indoleamine 2,3-dioxygenase and leads to upregulation of poly (ADP-ribose) polymerase, activation of which and also of SIRT1 (silent mating type information regulation 2 homolog 1) could lead to depletion of NAD<sup>+</sup> and ATP, resulting in cell death. NEFA also modulate heme synthesis and degradation, changes in which impact homocysteine metabolism and production of reduced glutathione and hydrogen sulphide. The significance of the interactions between heme and homocysteine metabolism in cancer biology has received little attention. Targeting Trp disposition in cancer to prevent the NEFA effects is suggested.</p></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1869 7","pages":"Article 159531"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of nonesterified fatty acids in cancer biology: Focus on tryptophan and related metabolism\",\"authors\":\"\",\"doi\":\"10.1016/j.bbalip.2024.159531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plasma nonesterified fatty acids (NEFA) are elevated in cancer, because of decreased albumin levels and of fatty acid oxidation, and increased fatty acid synthesis and lipolysis. Albumin depletion and NEFA elevation maximally release albumin-bound tryptophan (Trp) and increase its flux down the kynurenine pathway, leading to increased production of proinflammatory kynurenine metabolites, which tumors use to undermine T-cell function and achieve immune escape. Activation of the aryl hydrocarbon receptor by kynurenic acid promotes extrahepatic Trp degradation by indoleamine 2,3-dioxygenase and leads to upregulation of poly (ADP-ribose) polymerase, activation of which and also of SIRT1 (silent mating type information regulation 2 homolog 1) could lead to depletion of NAD<sup>+</sup> and ATP, resulting in cell death. NEFA also modulate heme synthesis and degradation, changes in which impact homocysteine metabolism and production of reduced glutathione and hydrogen sulphide. The significance of the interactions between heme and homocysteine metabolism in cancer biology has received little attention. Targeting Trp disposition in cancer to prevent the NEFA effects is suggested.</p></div>\",\"PeriodicalId\":8815,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"volume\":\"1869 7\",\"pages\":\"Article 159531\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388198124000817\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198124000817","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The role of nonesterified fatty acids in cancer biology: Focus on tryptophan and related metabolism
Plasma nonesterified fatty acids (NEFA) are elevated in cancer, because of decreased albumin levels and of fatty acid oxidation, and increased fatty acid synthesis and lipolysis. Albumin depletion and NEFA elevation maximally release albumin-bound tryptophan (Trp) and increase its flux down the kynurenine pathway, leading to increased production of proinflammatory kynurenine metabolites, which tumors use to undermine T-cell function and achieve immune escape. Activation of the aryl hydrocarbon receptor by kynurenic acid promotes extrahepatic Trp degradation by indoleamine 2,3-dioxygenase and leads to upregulation of poly (ADP-ribose) polymerase, activation of which and also of SIRT1 (silent mating type information regulation 2 homolog 1) could lead to depletion of NAD+ and ATP, resulting in cell death. NEFA also modulate heme synthesis and degradation, changes in which impact homocysteine metabolism and production of reduced glutathione and hydrogen sulphide. The significance of the interactions between heme and homocysteine metabolism in cancer biology has received little attention. Targeting Trp disposition in cancer to prevent the NEFA effects is suggested.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.