{"title":"在单例研究中分析计数数据时的 GLMMs 模型选择:蒙特卡罗模拟","authors":"Haoran Li","doi":"10.3758/s13428-024-02464-7","DOIUrl":null,"url":null,"abstract":"<p><p>Generalized linear mixed models (GLMMs) have great potential to deal with count data in single-case experimental designs (SCEDs). However, applied researchers have faced challenges in making various statistical decisions when using such advanced statistical techniques in their own research. This study focused on a critical issue by investigating the selection of an appropriate distribution to handle different types of count data in SCEDs due to overdispersion and/or zero-inflation. To achieve this, I proposed two model selection frameworks, one based on calculating information criteria (AIC and BIC) and another based on utilizing a multistage-model selection procedure. Four data scenarios were simulated including Poisson, negative binominal (NB), zero-inflated Poisson (ZIP), and zero-inflated negative binomial (ZINB). The same set of models (i.e., Poisson, NB, ZIP, and ZINB) were fitted for each scenario. In the simulation, I evaluated 10 model selection strategies within the two frameworks by assessing the model selection bias and its consequences on the accuracy of the treatment effect estimates and inferential statistics. Based on the simulation results and previous work, I provide recommendations regarding which model selection methods should be adopted in different scenarios. The implications, limitations, and future research directions are also discussed.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model selection of GLMMs in the analysis of count data in single-case studies: A Monte Carlo simulation.\",\"authors\":\"Haoran Li\",\"doi\":\"10.3758/s13428-024-02464-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Generalized linear mixed models (GLMMs) have great potential to deal with count data in single-case experimental designs (SCEDs). However, applied researchers have faced challenges in making various statistical decisions when using such advanced statistical techniques in their own research. This study focused on a critical issue by investigating the selection of an appropriate distribution to handle different types of count data in SCEDs due to overdispersion and/or zero-inflation. To achieve this, I proposed two model selection frameworks, one based on calculating information criteria (AIC and BIC) and another based on utilizing a multistage-model selection procedure. Four data scenarios were simulated including Poisson, negative binominal (NB), zero-inflated Poisson (ZIP), and zero-inflated negative binomial (ZINB). The same set of models (i.e., Poisson, NB, ZIP, and ZINB) were fitted for each scenario. In the simulation, I evaluated 10 model selection strategies within the two frameworks by assessing the model selection bias and its consequences on the accuracy of the treatment effect estimates and inferential statistics. Based on the simulation results and previous work, I provide recommendations regarding which model selection methods should be adopted in different scenarios. The implications, limitations, and future research directions are also discussed.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.3758/s13428-024-02464-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02464-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Model selection of GLMMs in the analysis of count data in single-case studies: A Monte Carlo simulation.
Generalized linear mixed models (GLMMs) have great potential to deal with count data in single-case experimental designs (SCEDs). However, applied researchers have faced challenges in making various statistical decisions when using such advanced statistical techniques in their own research. This study focused on a critical issue by investigating the selection of an appropriate distribution to handle different types of count data in SCEDs due to overdispersion and/or zero-inflation. To achieve this, I proposed two model selection frameworks, one based on calculating information criteria (AIC and BIC) and another based on utilizing a multistage-model selection procedure. Four data scenarios were simulated including Poisson, negative binominal (NB), zero-inflated Poisson (ZIP), and zero-inflated negative binomial (ZINB). The same set of models (i.e., Poisson, NB, ZIP, and ZINB) were fitted for each scenario. In the simulation, I evaluated 10 model selection strategies within the two frameworks by assessing the model selection bias and its consequences on the accuracy of the treatment effect estimates and inferential statistics. Based on the simulation results and previous work, I provide recommendations regarding which model selection methods should be adopted in different scenarios. The implications, limitations, and future research directions are also discussed.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.