19 54:科尔莫戈罗夫的汉密尔顿动力学新 "韵律方法

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Luigi Chierchia, Isabella Fascitiello
{"title":"19 54:科尔莫戈罗夫的汉密尔顿动力学新 \"韵律方法","authors":"Luigi Chierchia,&nbsp;Isabella Fascitiello","doi":"10.1134/S1560354724550021","DOIUrl":null,"url":null,"abstract":"<div><p>We review Kolmogorov’s 1954 fundamental paper <i>On the persistence of conditionally periodic motions under a small change in the Hamilton function</i> (Dokl. akad. nauk SSSR, 1954, vol. <b>98</b>, pp. 527–530), both from the historical and the mathematical point of view.\nIn particular, we discuss Theorem 2 (which deals with the measure in phase space of persistent tori), the proof of which is not discussed at all by Kolmogorov, notwithstanding its centrality in his program in classical mechanics.</p><p>In Appendix, an interview (May 28, 2021) to Ya. Sinai on Kolmogorov’s legacy in classical mechanics is reported.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"29 and Dmitry Treschev)","pages":"517 - 535"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nineteen Fifty-Four: Kolmogorov’s New “Metrical Approach” to Hamiltonian Dynamics\",\"authors\":\"Luigi Chierchia,&nbsp;Isabella Fascitiello\",\"doi\":\"10.1134/S1560354724550021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We review Kolmogorov’s 1954 fundamental paper <i>On the persistence of conditionally periodic motions under a small change in the Hamilton function</i> (Dokl. akad. nauk SSSR, 1954, vol. <b>98</b>, pp. 527–530), both from the historical and the mathematical point of view.\\nIn particular, we discuss Theorem 2 (which deals with the measure in phase space of persistent tori), the proof of which is not discussed at all by Kolmogorov, notwithstanding its centrality in his program in classical mechanics.</p><p>In Appendix, an interview (May 28, 2021) to Ya. Sinai on Kolmogorov’s legacy in classical mechanics is reported.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"29 and Dmitry Treschev)\",\"pages\":\"517 - 535\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354724550021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354724550021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们从历史和数学的角度回顾了科尔莫戈罗夫 1954 年的基本论文《论汉密尔顿函数微小变化下条件周期运动的持久性》(《苏联科学院学报》,1954 年,第 98 卷,第 527-530 页)。我们特别讨论了定理 2(涉及持久环的相空间度量),尽管该定理在科尔莫戈罗夫的经典力学计划中占据核心地位,但科尔莫戈罗夫根本没有讨论过该定理的证明。西奈的访谈(2021 年 5 月 28 日)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nineteen Fifty-Four: Kolmogorov’s New “Metrical Approach” to Hamiltonian Dynamics

We review Kolmogorov’s 1954 fundamental paper On the persistence of conditionally periodic motions under a small change in the Hamilton function (Dokl. akad. nauk SSSR, 1954, vol. 98, pp. 527–530), both from the historical and the mathematical point of view. In particular, we discuss Theorem 2 (which deals with the measure in phase space of persistent tori), the proof of which is not discussed at all by Kolmogorov, notwithstanding its centrality in his program in classical mechanics.

In Appendix, an interview (May 28, 2021) to Ya. Sinai on Kolmogorov’s legacy in classical mechanics is reported.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信