Shuang Chen, Jiajia Sun, Zongqian Shi, Xiaofeng Liu, Yuxin Ma, Ruohan Li, Shumin Xin, Nan Wang, Xiaoling Li, Kai Wu
{"title":"利用磁化功能化柔性微磁体阵列研究聚苯乙烯微珠在集成微流体系统中的聚焦和分离问题","authors":"Shuang Chen, Jiajia Sun, Zongqian Shi, Xiaofeng Liu, Yuxin Ma, Ruohan Li, Shumin Xin, Nan Wang, Xiaoling Li, Kai Wu","doi":"10.1007/s10404-024-02749-5","DOIUrl":null,"url":null,"abstract":"<div><p>Focusing and separation of cells by microfluidic techniques are significant steps in many applications, such as single-cell analysis and disease diagnosis. Among the microfluidic techniques, passive magnetophoresis, as a label-free manner, can manipulate samples by means of magnetic field. Nowadays, most magnetic fields are generated by permanent magnets and electromagnets with large size. However, it is difficult to assemble a magnetic array using permanent magnets or electromagnets to optimize the field distribution. To produce a flexible magnetic field, a micro-magnet made by NdFeB powder and polydimethyl siloxane is proposed in this paper, and those magnetized micro-magnets are arranged into different arrays according to the arrangements of their magnetization directions. Meanwhile, a microfluidic chip containing magnetized micro-magnet arrays is designed for focusing and separating polystyrene microbeads with different diameters. The focusing and separation behaviors of microbeads in the designed microfluidic system are numerical and experimental investigated. In addition, the effects of flow rate and the arrangement of the magnetic micro-magnet array on microbead focusing and separation are discussed. Finally, a multistage microfluidic chip is designed to successfully isolate 5 μm-diameter, 10 μm-diameter, and 15 μm-diameter microbeads from their mixture at a flow rate of 240 μL/min with high purity.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 8","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the focusing and separation of polystyrene microbeads in an integrated microfluidic system using magnetized functionalized flexible micro-magnet arrays\",\"authors\":\"Shuang Chen, Jiajia Sun, Zongqian Shi, Xiaofeng Liu, Yuxin Ma, Ruohan Li, Shumin Xin, Nan Wang, Xiaoling Li, Kai Wu\",\"doi\":\"10.1007/s10404-024-02749-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Focusing and separation of cells by microfluidic techniques are significant steps in many applications, such as single-cell analysis and disease diagnosis. Among the microfluidic techniques, passive magnetophoresis, as a label-free manner, can manipulate samples by means of magnetic field. Nowadays, most magnetic fields are generated by permanent magnets and electromagnets with large size. However, it is difficult to assemble a magnetic array using permanent magnets or electromagnets to optimize the field distribution. To produce a flexible magnetic field, a micro-magnet made by NdFeB powder and polydimethyl siloxane is proposed in this paper, and those magnetized micro-magnets are arranged into different arrays according to the arrangements of their magnetization directions. Meanwhile, a microfluidic chip containing magnetized micro-magnet arrays is designed for focusing and separating polystyrene microbeads with different diameters. The focusing and separation behaviors of microbeads in the designed microfluidic system are numerical and experimental investigated. In addition, the effects of flow rate and the arrangement of the magnetic micro-magnet array on microbead focusing and separation are discussed. Finally, a multistage microfluidic chip is designed to successfully isolate 5 μm-diameter, 10 μm-diameter, and 15 μm-diameter microbeads from their mixture at a flow rate of 240 μL/min with high purity.</p></div>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"28 8\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10404-024-02749-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02749-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Investigation on the focusing and separation of polystyrene microbeads in an integrated microfluidic system using magnetized functionalized flexible micro-magnet arrays
Focusing and separation of cells by microfluidic techniques are significant steps in many applications, such as single-cell analysis and disease diagnosis. Among the microfluidic techniques, passive magnetophoresis, as a label-free manner, can manipulate samples by means of magnetic field. Nowadays, most magnetic fields are generated by permanent magnets and electromagnets with large size. However, it is difficult to assemble a magnetic array using permanent magnets or electromagnets to optimize the field distribution. To produce a flexible magnetic field, a micro-magnet made by NdFeB powder and polydimethyl siloxane is proposed in this paper, and those magnetized micro-magnets are arranged into different arrays according to the arrangements of their magnetization directions. Meanwhile, a microfluidic chip containing magnetized micro-magnet arrays is designed for focusing and separating polystyrene microbeads with different diameters. The focusing and separation behaviors of microbeads in the designed microfluidic system are numerical and experimental investigated. In addition, the effects of flow rate and the arrangement of the magnetic micro-magnet array on microbead focusing and separation are discussed. Finally, a multistage microfluidic chip is designed to successfully isolate 5 μm-diameter, 10 μm-diameter, and 15 μm-diameter microbeads from their mixture at a flow rate of 240 μL/min with high purity.
期刊介绍:
Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include:
1.000 Fundamental principles of micro- and nanoscale phenomena like,
flow, mass transport and reactions
3.000 Theoretical models and numerical simulation with experimental and/or analytical proof
4.000 Novel measurement & characterization technologies
5.000 Devices (actuators and sensors)
6.000 New unit-operations for dedicated microfluidic platforms
7.000 Lab-on-a-Chip applications
8.000 Microfabrication technologies and materials
Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).