{"title":"研究钯电触点在与卡宾纳米材料固体物质相互作用中的作用","authors":"Mariya Aleksandrova","doi":"10.3389/fmats.2024.1422398","DOIUrl":null,"url":null,"abstract":"Introduction: Traps at the interface between carbyne and palladium nanocoatings, produced at different growth conditions, are explored by current-voltage characteristics, scanning electron microscopy and thermal stimulation of charges for evaluation of their nature. It was found that the Pd films can form an Ohmic contact with the carbyne at certain deposition conditions and such deviated from the Ohmic behavior according to the RF sputtering voltage. This growth parameter was found to affect the interfacial traps formation on the carbyne surface, which is important feature for the charge trapping and releasing properties for hydrogen isotopes in the context of the energy release applications.Methods, Results and Discussion: The sputtering voltages of 0.5 kV and 0.7 kV were found unsuitable for controlled trap formation. Based on the currentvoltage and thermally stimulated current (TSC) measurements, a sputtering voltage of 0.9 kV appeared to be more favorable compared to 0.5 kV and 0.7 kV. At 0.9 kV thermal activation of charge carriers are enabled at lower thermal energies, showing a distinct change in TSC behavior correlated to trap activation.","PeriodicalId":12524,"journal":{"name":"Frontiers in Materials","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the role of palladium electrical contacts in interactions with carbyne nanomaterial solid matter\",\"authors\":\"Mariya Aleksandrova\",\"doi\":\"10.3389/fmats.2024.1422398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Traps at the interface between carbyne and palladium nanocoatings, produced at different growth conditions, are explored by current-voltage characteristics, scanning electron microscopy and thermal stimulation of charges for evaluation of their nature. It was found that the Pd films can form an Ohmic contact with the carbyne at certain deposition conditions and such deviated from the Ohmic behavior according to the RF sputtering voltage. This growth parameter was found to affect the interfacial traps formation on the carbyne surface, which is important feature for the charge trapping and releasing properties for hydrogen isotopes in the context of the energy release applications.Methods, Results and Discussion: The sputtering voltages of 0.5 kV and 0.7 kV were found unsuitable for controlled trap formation. Based on the currentvoltage and thermally stimulated current (TSC) measurements, a sputtering voltage of 0.9 kV appeared to be more favorable compared to 0.5 kV and 0.7 kV. At 0.9 kV thermal activation of charge carriers are enabled at lower thermal energies, showing a distinct change in TSC behavior correlated to trap activation.\",\"PeriodicalId\":12524,\"journal\":{\"name\":\"Frontiers in Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3389/fmats.2024.1422398\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3389/fmats.2024.1422398","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigating the role of palladium electrical contacts in interactions with carbyne nanomaterial solid matter
Introduction: Traps at the interface between carbyne and palladium nanocoatings, produced at different growth conditions, are explored by current-voltage characteristics, scanning electron microscopy and thermal stimulation of charges for evaluation of their nature. It was found that the Pd films can form an Ohmic contact with the carbyne at certain deposition conditions and such deviated from the Ohmic behavior according to the RF sputtering voltage. This growth parameter was found to affect the interfacial traps formation on the carbyne surface, which is important feature for the charge trapping and releasing properties for hydrogen isotopes in the context of the energy release applications.Methods, Results and Discussion: The sputtering voltages of 0.5 kV and 0.7 kV were found unsuitable for controlled trap formation. Based on the currentvoltage and thermally stimulated current (TSC) measurements, a sputtering voltage of 0.9 kV appeared to be more favorable compared to 0.5 kV and 0.7 kV. At 0.9 kV thermal activation of charge carriers are enabled at lower thermal energies, showing a distinct change in TSC behavior correlated to trap activation.
期刊介绍:
Frontiers in Materials is a high visibility journal publishing rigorously peer-reviewed research across the entire breadth of materials science and engineering. This interdisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers across academia and industry, and the public worldwide.
Founded upon a research community driven approach, this Journal provides a balanced and comprehensive offering of Specialty Sections, each of which has a dedicated Editorial Board of leading experts in the respective field.