WR Salem Jeyaseelan, T Jayasankar, K Vinoth Kumar, R Ponni
{"title":"水下无线传感器网络中基于灰狼优化的改进节点定位方法","authors":"WR Salem Jeyaseelan, T Jayasankar, K Vinoth Kumar, R Ponni","doi":"10.2478/msr-2024-0013","DOIUrl":null,"url":null,"abstract":"Underwater Wireless Sensor Networks (UWSNs) are established by Autonomous Underwater Vehicles (AUVs) or static Sensor Nodes (SN) that collect and transmit information over the underwater environment. Localization plays a vital role in the effective deployment, navigation and coordination of these nodes for many applications, namely underwater surveillance, underwater exploration, oceanographic data collection and environmental monitoring. Due to the unique characteristics of underwater transmission and acquisition, this is a fundamental challenge in underwater networks. However, localization in UWSNs is problematic due to the unique features of underwater transmission and the harsh underwater environment. To address these challenges, this paper presents an Improved Grey Wolf Optimization Based Node Localization Approach in UWSN (IGWONL-UWSN) technique. The presented IGWONL-UWSN technique is inspired by the hunting behavior of grey wolves with the Dimension Learning-based Hunting (DLH) search process. The proposed IGWONL-UWSN technique uses the Improved Grey Wolf Optimization Based (IGWO) algorithm to calculate the optimal location of the nodes in the UWSN. Moreover, the IGWONL-UWSN technique incorporates the DLH search process to improve the convergence and accuracy. The simulation results of the IGWONL-UWSN technique are validated using a set of performance measures. The simulation results show the improvements of the IGWONL-UWSN method over other approaches with respect to various metrics.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Grey Wolf Optimization Based Node Localization Approach in Underwater Wireless Sensor Networks\",\"authors\":\"WR Salem Jeyaseelan, T Jayasankar, K Vinoth Kumar, R Ponni\",\"doi\":\"10.2478/msr-2024-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater Wireless Sensor Networks (UWSNs) are established by Autonomous Underwater Vehicles (AUVs) or static Sensor Nodes (SN) that collect and transmit information over the underwater environment. Localization plays a vital role in the effective deployment, navigation and coordination of these nodes for many applications, namely underwater surveillance, underwater exploration, oceanographic data collection and environmental monitoring. Due to the unique characteristics of underwater transmission and acquisition, this is a fundamental challenge in underwater networks. However, localization in UWSNs is problematic due to the unique features of underwater transmission and the harsh underwater environment. To address these challenges, this paper presents an Improved Grey Wolf Optimization Based Node Localization Approach in UWSN (IGWONL-UWSN) technique. The presented IGWONL-UWSN technique is inspired by the hunting behavior of grey wolves with the Dimension Learning-based Hunting (DLH) search process. The proposed IGWONL-UWSN technique uses the Improved Grey Wolf Optimization Based (IGWO) algorithm to calculate the optimal location of the nodes in the UWSN. Moreover, the IGWONL-UWSN technique incorporates the DLH search process to improve the convergence and accuracy. The simulation results of the IGWONL-UWSN technique are validated using a set of performance measures. The simulation results show the improvements of the IGWONL-UWSN method over other approaches with respect to various metrics.\",\"PeriodicalId\":49848,\"journal\":{\"name\":\"Measurement Science Review\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/msr-2024-0013\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/msr-2024-0013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Improved Grey Wolf Optimization Based Node Localization Approach in Underwater Wireless Sensor Networks
Underwater Wireless Sensor Networks (UWSNs) are established by Autonomous Underwater Vehicles (AUVs) or static Sensor Nodes (SN) that collect and transmit information over the underwater environment. Localization plays a vital role in the effective deployment, navigation and coordination of these nodes for many applications, namely underwater surveillance, underwater exploration, oceanographic data collection and environmental monitoring. Due to the unique characteristics of underwater transmission and acquisition, this is a fundamental challenge in underwater networks. However, localization in UWSNs is problematic due to the unique features of underwater transmission and the harsh underwater environment. To address these challenges, this paper presents an Improved Grey Wolf Optimization Based Node Localization Approach in UWSN (IGWONL-UWSN) technique. The presented IGWONL-UWSN technique is inspired by the hunting behavior of grey wolves with the Dimension Learning-based Hunting (DLH) search process. The proposed IGWONL-UWSN technique uses the Improved Grey Wolf Optimization Based (IGWO) algorithm to calculate the optimal location of the nodes in the UWSN. Moreover, the IGWONL-UWSN technique incorporates the DLH search process to improve the convergence and accuracy. The simulation results of the IGWONL-UWSN technique are validated using a set of performance measures. The simulation results show the improvements of the IGWONL-UWSN method over other approaches with respect to various metrics.
期刊介绍:
- theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science