Naveen Saladi, Luca Montanari, Alireza Mohebbi, Michelle A. Cooper, Benjamin Graybeal
{"title":"评估超高性能混凝土的凝结行为","authors":"Naveen Saladi, Luca Montanari, Alireza Mohebbi, Michelle A. Cooper, Benjamin Graybeal","doi":"10.1617/s11527-024-02408-9","DOIUrl":null,"url":null,"abstract":"<div><p>The setting behavior of ultra-high performance concrete (UHPC) is demonstrably different from that of conventional concrete; thus, tools and guidance extending beyond common test methods such as Vicat and penetration are needed. While UHPC is known for its enhanced mechanical and durability properties, due to the low water and high cementitious contents, UHPC-class materials are prone to early-age autogenous shrinkage. Recognizing that UHPCs are commonly supplied to construction sites as prebagged, proprietary mixes with unknown constituents, and that accurate determination of setting time is crucial in determining the early-age autogenous shrinkage of UHPC-class materials as well as for scheduling construction operations and quality control actions, this study explores alternate test methods such as isothermal calorimetry (ASTM C1679), semi-adiabatic calorimetry (ASTM C1753), autogenous shrinkage (ASTM C1698), chemical shrinkage (ASTM C1608), and dual ring test (American Association of State Highway and Transportation Officials (AASHTO T 363) to evaluate the setting behavior of UHPCs. Setting times obtained using the alternate test methods aligned well with each other and were found to be different than the setting times indicated through standard test methods. Discussion and guidance on the applicability and the use of alternate test methods to determine the setting time of UHPCs for various laboratory and field applications are provided.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"57 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02408-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessing the setting behavior of ultra-high performance concrete\",\"authors\":\"Naveen Saladi, Luca Montanari, Alireza Mohebbi, Michelle A. Cooper, Benjamin Graybeal\",\"doi\":\"10.1617/s11527-024-02408-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The setting behavior of ultra-high performance concrete (UHPC) is demonstrably different from that of conventional concrete; thus, tools and guidance extending beyond common test methods such as Vicat and penetration are needed. While UHPC is known for its enhanced mechanical and durability properties, due to the low water and high cementitious contents, UHPC-class materials are prone to early-age autogenous shrinkage. Recognizing that UHPCs are commonly supplied to construction sites as prebagged, proprietary mixes with unknown constituents, and that accurate determination of setting time is crucial in determining the early-age autogenous shrinkage of UHPC-class materials as well as for scheduling construction operations and quality control actions, this study explores alternate test methods such as isothermal calorimetry (ASTM C1679), semi-adiabatic calorimetry (ASTM C1753), autogenous shrinkage (ASTM C1698), chemical shrinkage (ASTM C1608), and dual ring test (American Association of State Highway and Transportation Officials (AASHTO T 363) to evaluate the setting behavior of UHPCs. Setting times obtained using the alternate test methods aligned well with each other and were found to be different than the setting times indicated through standard test methods. Discussion and guidance on the applicability and the use of alternate test methods to determine the setting time of UHPCs for various laboratory and field applications are provided.</p></div>\",\"PeriodicalId\":691,\"journal\":{\"name\":\"Materials and Structures\",\"volume\":\"57 6\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1617/s11527-024-02408-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1617/s11527-024-02408-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02408-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Assessing the setting behavior of ultra-high performance concrete
The setting behavior of ultra-high performance concrete (UHPC) is demonstrably different from that of conventional concrete; thus, tools and guidance extending beyond common test methods such as Vicat and penetration are needed. While UHPC is known for its enhanced mechanical and durability properties, due to the low water and high cementitious contents, UHPC-class materials are prone to early-age autogenous shrinkage. Recognizing that UHPCs are commonly supplied to construction sites as prebagged, proprietary mixes with unknown constituents, and that accurate determination of setting time is crucial in determining the early-age autogenous shrinkage of UHPC-class materials as well as for scheduling construction operations and quality control actions, this study explores alternate test methods such as isothermal calorimetry (ASTM C1679), semi-adiabatic calorimetry (ASTM C1753), autogenous shrinkage (ASTM C1698), chemical shrinkage (ASTM C1608), and dual ring test (American Association of State Highway and Transportation Officials (AASHTO T 363) to evaluate the setting behavior of UHPCs. Setting times obtained using the alternate test methods aligned well with each other and were found to be different than the setting times indicated through standard test methods. Discussion and guidance on the applicability and the use of alternate test methods to determine the setting time of UHPCs for various laboratory and field applications are provided.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.