Carmelo Cassisi, Marco Aliotta, Andrea Cannata, Fabrizio Pistagna, Michele Prestifilippo, Mario Torrisi, Placido Montalto
{"title":"TSDS系统:收集、归档和共享火山观测站时间序列数据的框架","authors":"Carmelo Cassisi, Marco Aliotta, Andrea Cannata, Fabrizio Pistagna, Michele Prestifilippo, Mario Torrisi, Placido Montalto","doi":"10.1007/s00445-024-01757-1","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a framework designed to collect, archive, and share time series data coming from sensor networks at Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (Italy), which we have developed and called Time Series Database management System (TSDSystem). The framework proposes a flexible database model for the standardization of sensor networks data and implements an optimized technology for storage and retrieval of acquired time series data. It is designed for the implementation of multiparametric databases and then suitable for development in volcanological observatories worldwide. The proposed framework provides a web service to perform writing and reading data via a standard web communication protocol, which easily enables interaction with other instruments or automatic systems. All results provided by the TSDSystem web service are represented using common data formats in the context of online services. In particular, the station networks metadata representation follows a schema inspired by the International Federation of Digital Seismograph Networks, widely known in seismology. A web GUI (graphical user interface) is provided to test and document the web service. Additionally, basic built-in web applications are supplied with the web GUI to perform joint and synchronized time series data visualization as well as representation of stations on a geographical map. The web GUI also offers administration tools for data access policy management, creation of monitoring dashboards and data publication through web pages. The framework implements an authorization system that can be used to restrict both writing or reading operations. The TSDSystem can also be a useful tool for engineering surveillance systems. The implementing code of the framework is available with an open source license on a public repository together with a user manual.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"39 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TSDSystem: a framework to collect, archive and share time series data at volcanological observatories\",\"authors\":\"Carmelo Cassisi, Marco Aliotta, Andrea Cannata, Fabrizio Pistagna, Michele Prestifilippo, Mario Torrisi, Placido Montalto\",\"doi\":\"10.1007/s00445-024-01757-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a framework designed to collect, archive, and share time series data coming from sensor networks at Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (Italy), which we have developed and called Time Series Database management System (TSDSystem). The framework proposes a flexible database model for the standardization of sensor networks data and implements an optimized technology for storage and retrieval of acquired time series data. It is designed for the implementation of multiparametric databases and then suitable for development in volcanological observatories worldwide. The proposed framework provides a web service to perform writing and reading data via a standard web communication protocol, which easily enables interaction with other instruments or automatic systems. All results provided by the TSDSystem web service are represented using common data formats in the context of online services. In particular, the station networks metadata representation follows a schema inspired by the International Federation of Digital Seismograph Networks, widely known in seismology. A web GUI (graphical user interface) is provided to test and document the web service. Additionally, basic built-in web applications are supplied with the web GUI to perform joint and synchronized time series data visualization as well as representation of stations on a geographical map. The web GUI also offers administration tools for data access policy management, creation of monitoring dashboards and data publication through web pages. The framework implements an authorization system that can be used to restrict both writing or reading operations. The TSDSystem can also be a useful tool for engineering surveillance systems. The implementing code of the framework is available with an open source license on a public repository together with a user manual.</p>\",\"PeriodicalId\":55297,\"journal\":{\"name\":\"Bulletin of Volcanology\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Volcanology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00445-024-01757-1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00445-024-01757-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
TSDSystem: a framework to collect, archive and share time series data at volcanological observatories
This paper presents a framework designed to collect, archive, and share time series data coming from sensor networks at Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo (Italy), which we have developed and called Time Series Database management System (TSDSystem). The framework proposes a flexible database model for the standardization of sensor networks data and implements an optimized technology for storage and retrieval of acquired time series data. It is designed for the implementation of multiparametric databases and then suitable for development in volcanological observatories worldwide. The proposed framework provides a web service to perform writing and reading data via a standard web communication protocol, which easily enables interaction with other instruments or automatic systems. All results provided by the TSDSystem web service are represented using common data formats in the context of online services. In particular, the station networks metadata representation follows a schema inspired by the International Federation of Digital Seismograph Networks, widely known in seismology. A web GUI (graphical user interface) is provided to test and document the web service. Additionally, basic built-in web applications are supplied with the web GUI to perform joint and synchronized time series data visualization as well as representation of stations on a geographical map. The web GUI also offers administration tools for data access policy management, creation of monitoring dashboards and data publication through web pages. The framework implements an authorization system that can be used to restrict both writing or reading operations. The TSDSystem can also be a useful tool for engineering surveillance systems. The implementing code of the framework is available with an open source license on a public repository together with a user manual.
期刊介绍:
Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.