{"title":"引入新的非线性方法,为控制工程应用设计的热交换器建模","authors":"Yannick Fürst, Stefan Brandt, Martin Kriegel","doi":"10.1016/j.ejcon.2024.101072","DOIUrl":null,"url":null,"abstract":"<div><p>A new low-order dynamic model is proposed to predict the nonlinear heat transfer in heat exchangers, using a modeling approach that does not require detailed information about the flow arrangement. On the primary side, a model of a throttling valve is added to include the control signal’s influence on the secondary side’s output temperature. The model does not consider time delays but uses variable time constants that depend on the mass flow rates. A two-step procedure is proposed to estimate the model parameters: first, the complete parameter vector is estimated to solve a parameter estimation problem. Then, a subset of the estimated parameters is tuned online using an <em>Unscented Kalman Filter</em> to fit the model further to reality. The accuracy of the model as well as the implementation of the parameter estimation are demonstrated using an example from practice.</p></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"79 ","pages":"Article 101072"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0947358024001328/pdfft?md5=ccfc45a4694fe7c19d9b88c4806cb2d8&pid=1-s2.0-S0947358024001328-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Introducing a new nonlinear approach to model heat exchangers designed for control engineering applications\",\"authors\":\"Yannick Fürst, Stefan Brandt, Martin Kriegel\",\"doi\":\"10.1016/j.ejcon.2024.101072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new low-order dynamic model is proposed to predict the nonlinear heat transfer in heat exchangers, using a modeling approach that does not require detailed information about the flow arrangement. On the primary side, a model of a throttling valve is added to include the control signal’s influence on the secondary side’s output temperature. The model does not consider time delays but uses variable time constants that depend on the mass flow rates. A two-step procedure is proposed to estimate the model parameters: first, the complete parameter vector is estimated to solve a parameter estimation problem. Then, a subset of the estimated parameters is tuned online using an <em>Unscented Kalman Filter</em> to fit the model further to reality. The accuracy of the model as well as the implementation of the parameter estimation are demonstrated using an example from practice.</p></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"79 \",\"pages\":\"Article 101072\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0947358024001328/pdfft?md5=ccfc45a4694fe7c19d9b88c4806cb2d8&pid=1-s2.0-S0947358024001328-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358024001328\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024001328","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Introducing a new nonlinear approach to model heat exchangers designed for control engineering applications
A new low-order dynamic model is proposed to predict the nonlinear heat transfer in heat exchangers, using a modeling approach that does not require detailed information about the flow arrangement. On the primary side, a model of a throttling valve is added to include the control signal’s influence on the secondary side’s output temperature. The model does not consider time delays but uses variable time constants that depend on the mass flow rates. A two-step procedure is proposed to estimate the model parameters: first, the complete parameter vector is estimated to solve a parameter estimation problem. Then, a subset of the estimated parameters is tuned online using an Unscented Kalman Filter to fit the model further to reality. The accuracy of the model as well as the implementation of the parameter estimation are demonstrated using an example from practice.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.