利用机载激光雷达估算菲律宾古老红树林的地上生物量

IF 1.7 4区 环境科学与生态学 Q3 ECOLOGY
Mohammad Shamim Hasan Mandal, Rempei Suwa, Rene N. Rollon, Giannina Marie G. Albano, Green Ann A. Cruz, Kenji Ono, Yasmin H. Primavera‐Tirol, Ariel C. Blanco, Kazuo Nadaoka
{"title":"利用机载激光雷达估算菲律宾古老红树林的地上生物量","authors":"Mohammad Shamim Hasan Mandal, Rempei Suwa, Rene N. Rollon, Giannina Marie G. Albano, Green Ann A. Cruz, Kenji Ono, Yasmin H. Primavera‐Tirol, Ariel C. Blanco, Kazuo Nadaoka","doi":"10.1111/1440-1703.12503","DOIUrl":null,"url":null,"abstract":"Monitoring mangrove forest biomass is vital for assessing their carbon sequestration potential. This study uses airborne LiDAR data to estimate the aboveground biomass (<jats:italic>AGB</jats:italic>) of an old‐growth mangrove forest in the Katunggan It Ibajay Ecopark (KII Ecopark) on Panay Island, Philippines. To establish a relationship between the LiDAR canopy height profile with the field observed <jats:italic>AGB</jats:italic> at the plot level, we tested 20 LiDAR derived relative height (<jats:italic>RH</jats:italic>) metrics. First, we tested a relationship between field observed Lorey's mean canopy height (<jats:italic>H</jats:italic><jats:sub>m</jats:sub>) and <jats:italic>RH</jats:italic> metrics, which were then used to estimate <jats:italic>AGB</jats:italic> by applying a previously established allometric model. Second, we tested the direct relationship between <jats:italic>RH</jats:italic> metrics and observed <jats:italic>AGB</jats:italic>. Among <jats:italic>RH</jats:italic> metrics, <jats:italic>RH</jats:italic><jats:sub>95</jats:sub> showed the best correspondence with the <jats:italic>H</jats:italic><jats:sub>m</jats:sub> (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.79) and when it was applied to the previously developed allometric for <jats:italic>AGB</jats:italic> estimation, the results showed a large underestimation of <jats:italic>AGB</jats:italic> (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.46) for plots with higher canopy heights. Conversely, the direct method using a power regression model with <jats:italic>RH</jats:italic><jats:sub>95</jats:sub> and observed <jats:italic>AGB</jats:italic> provided a better estimate (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.58). However, both models still underestimated <jats:italic>AGB</jats:italic> at the KII Ecopark. We conclude that, LiDAR‐based <jats:italic>AGB</jats:italic> estimation using <jats:italic>H</jats:italic><jats:sub>m</jats:sub> as a single variable can result in considerable underestimation, especially in old‐growth mangrove forests such as KII Ecopark. Further studies are necessary to develop accurate models for estimating <jats:italic>AGB</jats:italic> in such special types of mangroves which is important for mangrove monitoring, reporting and verification (MRV).","PeriodicalId":11434,"journal":{"name":"Ecological Research","volume":"20 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aboveground biomass estimation of an old‐growth mangrove forest using airborne LiDAR in the Philippines\",\"authors\":\"Mohammad Shamim Hasan Mandal, Rempei Suwa, Rene N. Rollon, Giannina Marie G. Albano, Green Ann A. Cruz, Kenji Ono, Yasmin H. Primavera‐Tirol, Ariel C. Blanco, Kazuo Nadaoka\",\"doi\":\"10.1111/1440-1703.12503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring mangrove forest biomass is vital for assessing their carbon sequestration potential. This study uses airborne LiDAR data to estimate the aboveground biomass (<jats:italic>AGB</jats:italic>) of an old‐growth mangrove forest in the Katunggan It Ibajay Ecopark (KII Ecopark) on Panay Island, Philippines. To establish a relationship between the LiDAR canopy height profile with the field observed <jats:italic>AGB</jats:italic> at the plot level, we tested 20 LiDAR derived relative height (<jats:italic>RH</jats:italic>) metrics. First, we tested a relationship between field observed Lorey's mean canopy height (<jats:italic>H</jats:italic><jats:sub>m</jats:sub>) and <jats:italic>RH</jats:italic> metrics, which were then used to estimate <jats:italic>AGB</jats:italic> by applying a previously established allometric model. Second, we tested the direct relationship between <jats:italic>RH</jats:italic> metrics and observed <jats:italic>AGB</jats:italic>. Among <jats:italic>RH</jats:italic> metrics, <jats:italic>RH</jats:italic><jats:sub>95</jats:sub> showed the best correspondence with the <jats:italic>H</jats:italic><jats:sub>m</jats:sub> (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.79) and when it was applied to the previously developed allometric for <jats:italic>AGB</jats:italic> estimation, the results showed a large underestimation of <jats:italic>AGB</jats:italic> (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.46) for plots with higher canopy heights. Conversely, the direct method using a power regression model with <jats:italic>RH</jats:italic><jats:sub>95</jats:sub> and observed <jats:italic>AGB</jats:italic> provided a better estimate (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.58). However, both models still underestimated <jats:italic>AGB</jats:italic> at the KII Ecopark. We conclude that, LiDAR‐based <jats:italic>AGB</jats:italic> estimation using <jats:italic>H</jats:italic><jats:sub>m</jats:sub> as a single variable can result in considerable underestimation, especially in old‐growth mangrove forests such as KII Ecopark. Further studies are necessary to develop accurate models for estimating <jats:italic>AGB</jats:italic> in such special types of mangroves which is important for mangrove monitoring, reporting and verification (MRV).\",\"PeriodicalId\":11434,\"journal\":{\"name\":\"Ecological Research\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/1440-1703.12503\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/1440-1703.12503","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

监测红树林的生物量对于评估其碳封存潜力至关重要。本研究利用机载激光雷达数据估算菲律宾帕奈岛 Katunggan It Ibajay 生态园(KII 生态园)中古老红树林的地上生物量(AGB)。为了建立 LiDAR 树冠高度剖面与地块层面实地观测到的 AGB 之间的关系,我们测试了 20 个 LiDAR 导出的相对高度 (RH) 指标。首先,我们测试了实地观测到的 Lorey 平均冠层高度(Hm)与相对高度指标之间的关系,然后应用之前建立的异速模型对 AGB 进行估算。其次,我们测试了 RH 指标与观测到的 AGB 之间的直接关系。在 RH 指标中,RH95 与 Hm 的对应关系最好(R2 = 0.79),当将其应用于先前建立的异速测量法估算 AGB 时,结果显示冠层高度较高的地块的 AGB 被严重低估(R2 = 0.46)。相反,使用 RH95 和观测 AGB 的幂回归模型的直接方法提供了较好的估计值(R2 = 0.58)。然而,这两种模型仍然低估了 KII 生态园的 AGB。我们的结论是,基于激光雷达的 AGB 估测使用 Hm 作为单一变量可能会导致严重低估,尤其是在 KII 生态公园这样的老龄红树林中。有必要开展进一步研究,以开发用于估算此类特殊类型红树林 AGB 的精确模型,这对红树林监测、报告和验证(MRV)非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aboveground biomass estimation of an old‐growth mangrove forest using airborne LiDAR in the Philippines
Monitoring mangrove forest biomass is vital for assessing their carbon sequestration potential. This study uses airborne LiDAR data to estimate the aboveground biomass (AGB) of an old‐growth mangrove forest in the Katunggan It Ibajay Ecopark (KII Ecopark) on Panay Island, Philippines. To establish a relationship between the LiDAR canopy height profile with the field observed AGB at the plot level, we tested 20 LiDAR derived relative height (RH) metrics. First, we tested a relationship between field observed Lorey's mean canopy height (Hm) and RH metrics, which were then used to estimate AGB by applying a previously established allometric model. Second, we tested the direct relationship between RH metrics and observed AGB. Among RH metrics, RH95 showed the best correspondence with the Hm (R2 = 0.79) and when it was applied to the previously developed allometric for AGB estimation, the results showed a large underestimation of AGB (R2 = 0.46) for plots with higher canopy heights. Conversely, the direct method using a power regression model with RH95 and observed AGB provided a better estimate (R2 = 0.58). However, both models still underestimated AGB at the KII Ecopark. We conclude that, LiDAR‐based AGB estimation using Hm as a single variable can result in considerable underestimation, especially in old‐growth mangrove forests such as KII Ecopark. Further studies are necessary to develop accurate models for estimating AGB in such special types of mangroves which is important for mangrove monitoring, reporting and verification (MRV).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Research
Ecological Research 环境科学-生态学
CiteScore
4.40
自引率
5.00%
发文量
87
审稿时长
5.6 months
期刊介绍: Ecological Research has been published in English by the Ecological Society of Japan since 1986. Ecological Research publishes original papers on all aspects of ecology, in both aquatic and terrestrial ecosystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信