P S N S R Srikar, Shaik Mahamad Allabakshi, Suman Gomosta, Shihabudheen M Maliyekkal, Reetesh K Gangwar
{"title":"通过同时进行光谱表征和自由基定量,开发高效的非热大气压氩等离子体射流","authors":"P S N S R Srikar, Shaik Mahamad Allabakshi, Suman Gomosta, Shihabudheen M Maliyekkal, Reetesh K Gangwar","doi":"10.1088/1361-6463/ad5c76","DOIUrl":null,"url":null,"abstract":"The work investigates the correlation between the plasma characteristics and reactive chemical species generation in an Ar-nonthermal atmospheric pressure plasma-jet (Ar-NTAPPJ) under various operating conditions such as gas flow rate, excitation voltage, and electrode gap and demonstrates the application of such understanding in developing efficient nonthermal plasma systems. The critical plasma parameters such as electron temperature (<italic toggle=\"yes\">T</italic>\n<sub>e</sub>) and electron density (<italic toggle=\"yes\">n</italic>\n<sub>e</sub>) under the various operating conditions were estimated using optical emission spectroscopy coupled with the collision radiative model and Stark broadening methods. At optimal setting of 5 LPM gas flow rate, 4 kV excitation voltage, and 6 mm electrode gap resulted in maximum <italic toggle=\"yes\">T</italic>\n<sub>e</sub> (0.6 eV), enhancing •OH production (0.056 mM) in the liquid phase and OH(A-X) emission in the gas phase, highlighting the significance of operating conditions on building energy efficient plasma systems. The enhanced performance of the optimized Ar-NTAPPJ is demonstrated by taking atrazine as a model herbicide. The degradation performance data was correlated and validated with results obtained from spectroscopic diagnostics. By adequately tuning the operating parameters, four times enhancement in energy yield (∼150 mg kWh<sup>−1</sup>) was obtained without perturbing the nonthermal plasma mode. In nonthermal mode, to best of the authors knowledge, it is the highest reported energy yield for atrazine degradation. The scalability aspect of the present plasma jet was also investigated by Intensified Charge-Coupled Device camera-based imaging technique. The study establishes the importance of adequate diagnostics in developing efficient next-generation plasma reactors.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of efficient nonthermal atmospheric-pressure Ar-plasma jet through simultaneous spectroscopic characterization and radical quantification\",\"authors\":\"P S N S R Srikar, Shaik Mahamad Allabakshi, Suman Gomosta, Shihabudheen M Maliyekkal, Reetesh K Gangwar\",\"doi\":\"10.1088/1361-6463/ad5c76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work investigates the correlation between the plasma characteristics and reactive chemical species generation in an Ar-nonthermal atmospheric pressure plasma-jet (Ar-NTAPPJ) under various operating conditions such as gas flow rate, excitation voltage, and electrode gap and demonstrates the application of such understanding in developing efficient nonthermal plasma systems. The critical plasma parameters such as electron temperature (<italic toggle=\\\"yes\\\">T</italic>\\n<sub>e</sub>) and electron density (<italic toggle=\\\"yes\\\">n</italic>\\n<sub>e</sub>) under the various operating conditions were estimated using optical emission spectroscopy coupled with the collision radiative model and Stark broadening methods. At optimal setting of 5 LPM gas flow rate, 4 kV excitation voltage, and 6 mm electrode gap resulted in maximum <italic toggle=\\\"yes\\\">T</italic>\\n<sub>e</sub> (0.6 eV), enhancing •OH production (0.056 mM) in the liquid phase and OH(A-X) emission in the gas phase, highlighting the significance of operating conditions on building energy efficient plasma systems. The enhanced performance of the optimized Ar-NTAPPJ is demonstrated by taking atrazine as a model herbicide. The degradation performance data was correlated and validated with results obtained from spectroscopic diagnostics. By adequately tuning the operating parameters, four times enhancement in energy yield (∼150 mg kWh<sup>−1</sup>) was obtained without perturbing the nonthermal plasma mode. In nonthermal mode, to best of the authors knowledge, it is the highest reported energy yield for atrazine degradation. The scalability aspect of the present plasma jet was also investigated by Intensified Charge-Coupled Device camera-based imaging technique. The study establishes the importance of adequate diagnostics in developing efficient next-generation plasma reactors.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad5c76\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad5c76","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Development of efficient nonthermal atmospheric-pressure Ar-plasma jet through simultaneous spectroscopic characterization and radical quantification
The work investigates the correlation between the plasma characteristics and reactive chemical species generation in an Ar-nonthermal atmospheric pressure plasma-jet (Ar-NTAPPJ) under various operating conditions such as gas flow rate, excitation voltage, and electrode gap and demonstrates the application of such understanding in developing efficient nonthermal plasma systems. The critical plasma parameters such as electron temperature (Te) and electron density (ne) under the various operating conditions were estimated using optical emission spectroscopy coupled with the collision radiative model and Stark broadening methods. At optimal setting of 5 LPM gas flow rate, 4 kV excitation voltage, and 6 mm electrode gap resulted in maximum Te (0.6 eV), enhancing •OH production (0.056 mM) in the liquid phase and OH(A-X) emission in the gas phase, highlighting the significance of operating conditions on building energy efficient plasma systems. The enhanced performance of the optimized Ar-NTAPPJ is demonstrated by taking atrazine as a model herbicide. The degradation performance data was correlated and validated with results obtained from spectroscopic diagnostics. By adequately tuning the operating parameters, four times enhancement in energy yield (∼150 mg kWh−1) was obtained without perturbing the nonthermal plasma mode. In nonthermal mode, to best of the authors knowledge, it is the highest reported energy yield for atrazine degradation. The scalability aspect of the present plasma jet was also investigated by Intensified Charge-Coupled Device camera-based imaging technique. The study establishes the importance of adequate diagnostics in developing efficient next-generation plasma reactors.
期刊介绍:
This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.