{"title":"杀虫剂抗药性:监测、机制和管理","authors":"Xingliang Wang, Ran Wang","doi":"10.1111/jen.13322","DOIUrl":null,"url":null,"abstract":"<p>Insecticides have been instrumental in the prevention and management of key agricultural insect pests, thereby contributing to increased food production. However, the effectiveness of insecticides diminishes when targeted pests develop resistance, a phenomenon linked to species evolution and survival instincts. The Arthropod Pesticide Resistance Database, maintained by Michigan State University, has documented 18,934 cases of resistance to insecticidal active ingredients worldwide from 1914 to the present. This special collection comprises eight original research articles that delve into the monitoring, mechanism and management of insecticide resistance. Two papers present multi-year resistance monitoring results in <i>Chilo suppressalis</i> and <i>Spodoptera litura</i>. Two studies employ transcriptome data to examine the candidate genes implicated in solanine-induced response in <i>Phthorimaea operculella</i> and chlorantraniliprole-induced response in <i>Galeruca daurica</i>, respectively. Additionally, two papers describe the genetic and physiological impacts of insecticides, while others explore the potential mechanisms underlying chlorfenapyr resistance in <i>Glyphodes pyloalis</i> and pyrethroids resistance in <i>Laodelphax striatellus</i>. The new results, conclusions and suggestions presented in this collection are anticipated to contribute to the advancement of knowledge on insecticide resistance and facilitate the development of a sustainable approach to managing insect pests.</p>","PeriodicalId":14987,"journal":{"name":"Journal of Applied Entomology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insecticide resistance: Monitoring, mechanism and management\",\"authors\":\"Xingliang Wang, Ran Wang\",\"doi\":\"10.1111/jen.13322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Insecticides have been instrumental in the prevention and management of key agricultural insect pests, thereby contributing to increased food production. However, the effectiveness of insecticides diminishes when targeted pests develop resistance, a phenomenon linked to species evolution and survival instincts. The Arthropod Pesticide Resistance Database, maintained by Michigan State University, has documented 18,934 cases of resistance to insecticidal active ingredients worldwide from 1914 to the present. This special collection comprises eight original research articles that delve into the monitoring, mechanism and management of insecticide resistance. Two papers present multi-year resistance monitoring results in <i>Chilo suppressalis</i> and <i>Spodoptera litura</i>. Two studies employ transcriptome data to examine the candidate genes implicated in solanine-induced response in <i>Phthorimaea operculella</i> and chlorantraniliprole-induced response in <i>Galeruca daurica</i>, respectively. Additionally, two papers describe the genetic and physiological impacts of insecticides, while others explore the potential mechanisms underlying chlorfenapyr resistance in <i>Glyphodes pyloalis</i> and pyrethroids resistance in <i>Laodelphax striatellus</i>. The new results, conclusions and suggestions presented in this collection are anticipated to contribute to the advancement of knowledge on insecticide resistance and facilitate the development of a sustainable approach to managing insect pests.</p>\",\"PeriodicalId\":14987,\"journal\":{\"name\":\"Journal of Applied Entomology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jen.13322\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Entomology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jen.13322","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Insecticide resistance: Monitoring, mechanism and management
Insecticides have been instrumental in the prevention and management of key agricultural insect pests, thereby contributing to increased food production. However, the effectiveness of insecticides diminishes when targeted pests develop resistance, a phenomenon linked to species evolution and survival instincts. The Arthropod Pesticide Resistance Database, maintained by Michigan State University, has documented 18,934 cases of resistance to insecticidal active ingredients worldwide from 1914 to the present. This special collection comprises eight original research articles that delve into the monitoring, mechanism and management of insecticide resistance. Two papers present multi-year resistance monitoring results in Chilo suppressalis and Spodoptera litura. Two studies employ transcriptome data to examine the candidate genes implicated in solanine-induced response in Phthorimaea operculella and chlorantraniliprole-induced response in Galeruca daurica, respectively. Additionally, two papers describe the genetic and physiological impacts of insecticides, while others explore the potential mechanisms underlying chlorfenapyr resistance in Glyphodes pyloalis and pyrethroids resistance in Laodelphax striatellus. The new results, conclusions and suggestions presented in this collection are anticipated to contribute to the advancement of knowledge on insecticide resistance and facilitate the development of a sustainable approach to managing insect pests.
期刊介绍:
The Journal of Applied Entomology publishes original articles on current research in applied entomology, including mites and spiders in terrestrial ecosystems.
Submit your next manuscript for rapid publication: the average time is currently 6 months from submission to publication. With Journal of Applied Entomology''s dynamic article-by-article publication process, Early View, fully peer-reviewed and type-set articles are published online as soon as they complete, without waiting for full issue compilation.